1. Institute of Biomedical Chemistry, Moscow, Russia 2. Analytical Chemistry Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, India
New types of organic-inorganic hybrid nanocomposites based on nanosized Titanium (IV) oxide TiO2 (<100 nm particle size) and carbon nanotubes (CNT, outer diameter 10-15 nm, inner diamentre 2-6 nm, length 0.1-10 m) and phosphatidilcholine were elaborated for improvement of analytical characteristics of screen printed electrodes. These nanomaterials were employed as an interface for the immobilization of skeletal myoglobin. Electrochemical behavior of myoglobin on such interfaces was characterized with cyclic voltammetry (CV) and square wave voltammetry (SWV). Direct unmediated electron transfer between myoglobin and electrodes modified with organic-inorganic hybrid nanocomposites was registered. TiO2 film and CNT film are biocompartible nanomaterials for myoglobin as was demonstrated with UV-Vis spectra. The midpoint potential of Fe3+/Fe2+ pair of myoglobin corresponded to Е1/2 = -0,263 V for CNT film, and Е1/2 = -0,468 V for TiO2 nanocomposite (vs. Ag/AgCl reference electrode)
Download PDF:
Keywords: enzyme electrodes, nanomaterials, Titanium oxyde, carbon nanotubes, myoglobin, electron transfer
Citation:
Shumyantseva V.V., Bulko T.V., Kuzikov A.V., Khan R., Archakov A.I. (2015) Functionalization of screen printed electrodes with organic-inorganic hybrid nano-composites for bio-sensing applications. Biomeditsinskaya Khimiya, 61(4), 474-479.
Shumyantseva V.V. et al. Functionalization of screen printed electrodes with organic-inorganic hybrid nano-composites for bio-sensing applications // Biomeditsinskaya Khimiya. - 2015. - V. 61. -N 4. - P. 474-479.
Shumyantseva V.V. et al., "Functionalization of screen printed electrodes with organic-inorganic hybrid nano-composites for bio-sensing applications." Biomeditsinskaya Khimiya 61.4 (2015): 474-479.
Shumyantseva, V. V., Bulko, T. V., Kuzikov, A. V., Khan, R., Archakov, A. I. (2015). Functionalization of screen printed electrodes with organic-inorganic hybrid nano-composites for bio-sensing applications. Biomeditsinskaya Khimiya, 61(4), 474-479.
Shumyantseva V.V., Suprun E.V., Bulko T.V., Dobrinina O.V., Archakov A.I., Sensor systems for medical application based on hemoproteins and nanocomposite materials, Biomeditsinskaya khimiya, 2010, vol: 56(1), 55-71. CrossRef Scholar google search
Dalle-Donne I., Scaloni A., Butterfield D.A. (2006) Redox Proteomics, Willey Interscience, 651-667. Scholar google search
Hasanzadeh M., Shadjou N. Eskandani M., Omidinia M. (2013) Trends Anal. Chem., 49, 20-30. Scholar google search
Lewis D.F.V. (2001) Guide to Cytochrome P450. Structure and function. Taylor and Francis Eds., London and New York. CrossRef Scholar google search
Archakov A.I., Bachmanova G.I. (1990) Cytochrome P450 and Active Oxygen, Taylor and Francis, London. Scholar google search
Suprun E., Bulko T., Lisitsa A., Gnedenko O., Ivanov A., Shumyantseva V., Archakov A. (2010) Biosens. Bioelectron., 25, 1694-1698. CrossRef Scholar google search
Suprun E., Saveliev A., Evtugyn G., Lisitsa A., Bulko T., Shumyantseva V., Archakov A. (2012) Biosens. Bioelectron., 15, 158–164. Scholar google search
Shumyantseva V., Bulko T., Suprun E., Chalenko Y., Vagin M., Rudakov Y., Shatskaya M., Archakov A. (2011) Biochim. Biophys. Acta, (Proteins and Proteomics), 1814, 94-101. CrossRef Scholar google search
Li S., Wang J., Wei H., Yang Y., Bu D., Zhang L., Zhou L. (2012) J. Integrative Agr., 11, 439-445. Scholar google search
Zeng Y., Chen H., Shiau K., Hung S., Wang Y., Wu C. (2012) 12, 380–390. Scholar google search
He X., Chen Z., Wang Y., Wang K., Su J., Yan G. (2012) Biosens. Bioelectron., 35 134–139. Scholar google search