Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a classical glycolytic redox sensitive enzyme, exhibits various non-glycolytic functions, which are considered to be especially important for progression of various neurodegenerative diseases. GAPDH binds isatin (indole-dione-2,3), an endogenous indole often used as a parent component in numerous derivatives demonstrating diverse pharmacological (including neuroprotector) activities. In this study we have investigated binding of intact and mildly oxidized GAPDH to immobilized isatin, using an optical biosensor technique, employing surface plasmon resonance (SPR), and the effect of isatin as a probe for this binding. Mild GAPDH oxidation by 70 mM H2O2 increased enzyme dissociation from immobilized isatin. Since GAPDH is considered as a putative target for various neuroprotector agents, this suggests that its redox state determines sensitivity to neuroprotective agents, and oxidative stress typical for various neurodegenerative disorders may significantly reduce pharmacological effectiveness of such compounds
Buneeva O.A., Gnedenko O.V., Medvedeva M.V., Ivanov A.S., Medvedev A.E. (2016) Oxidative modification of glyceraldehyde-3-phosphate dehydrogenase influences its interaction with endogenous neuroprotector isatin. Biomeditsinskaya Khimiya, 62(2), 160-163.
Buneeva O.A. et al. Oxidative modification of glyceraldehyde-3-phosphate dehydrogenase influences its interaction with endogenous neuroprotector isatin // Biomeditsinskaya Khimiya. - 2016. - V. 62. -N 2. - P. 160-163.
Buneeva O.A. et al., "Oxidative modification of glyceraldehyde-3-phosphate dehydrogenase influences its interaction with endogenous neuroprotector isatin." Biomeditsinskaya Khimiya 62.2 (2016): 160-163.
Buneeva, O. A., Gnedenko, O. V., Medvedeva, M. V., Ivanov, A. S., Medvedev, A. E. (2016). Oxidative modification of glyceraldehyde-3-phosphate dehydrogenase influences its interaction with endogenous neuroprotector isatin. Biomeditsinskaya Khimiya, 62(2), 160-163.
Crumeyrolle-Arias M., Buneeva O., Zgoda V., Kopylov A., Cardona A., Tournaire M-C., Pozdnev V., Glover V., Medvedev A. (2009) J. Neurosci. Res., 87, 2763-2772. CrossRef Scholar google search
Buneeva O., Gnedenko O., Zgoda V., Kopylov A., Glover V., Ivanov A. Medvedev A., Archakov A. (2010) Proteomics, 10, 23-37. CrossRef Scholar google search
Medvedev A., Buneeva O., Glover V. (2007) Biologics, 1, 151-162. Scholar google search
Pandeya S.N., Smitha S., Jyoti M., Sridhar S.K. (2005) Acta Pharm., 55, 27-46. Scholar google search
Lee D., Long S.A., Murray J.H., Adams J.L., Nuttall M.E., Nadeau D.P., Kikly K., Winkler J.D., Sung C-M., Ryan M.D., Levy M.A., Keller P.M., De Wolf W.E. Jr., (2001) J. Med. Chem., 44, 2015-2026. CrossRef Scholar google search
Sultana R., Butterfield D.A. (2013) J. Alzheimers Dis., 33, S243–S251. Scholar google search
Kragten E., Lalande I., Zimmermann K., Roggo S., Schindler P., Muller D., van Oostrum J., Waldmeier P., Furst P. (1998) J. Biol. Chem., 273, 5821-5828. CrossRef Scholar google search
Kusner L.L., Sarthy V.P., Mohr S. (2004) Invest. Ophthalmol. Vis. Sci., 45, 1553-1561. Scholar google search