1. Kirensky Institute of Physics, Krasnoyarsk, Russia; Voino-Yasenetski Krasnoyarsk State Medical University, Krasnoyarsk, Russia 2. Voino-Yasenetski Krasnoyarsk State Medical University, Krasnoyarsk, Russia 3. Kryzhanovsky Krasnoyarsk Regional Clinical Cancer Center, Krasnoyarsk, Russia 4. Voino-Yasenetski Krasnoyarsk State Medical University, Krasnoyarsk, Russia; Kryzhanovsky Krasnoyarsk Regional Clinical Cancer Center, Krasnoyarsk, Russia 5. Kirensky Institute of Physics, Krasnoyarsk, Russia
A method of selection of DNA aptamers to breast tumor tissue based on the use of postoperative material has been developed. Breast cancer tissues were used as the positive target; the negative targets included benign tumor tissue, adjacent healthy tissues, breast tissues from mastopathy patients, and also tissues of other types of malignant tumors. During selection a pool of DNA aptamers demonstrating selective binding to breast cancer cells and tissues and insignificant binding to breast benign tissues has been obtained. These DNA aptamers can be used for identification of protein markers, breast cancer diagnostics, and targeted delivery of anticancer drugs.
Download PDF:
Keywords: SELEX, DNA-aptamers, oligonucleotides, breast cancer
Citation:
Zamay G.S., Belayanina I.V., Zamay A.S., Komarova M.A., Krat A.V., Eremina E.N., Zukov R.A., Sokolov A.E., Zamay T.N. (2016) DNA aptamers selection for breast cancer. Biomeditsinskaya Khimiya, 62(4), 411-417.
Zamay G.S. et al. DNA aptamers selection for breast cancer // Biomeditsinskaya Khimiya. - 2016. - V. 62. -N 4. - P. 411-417.
Zamay G.S. et al., "DNA aptamers selection for breast cancer." Biomeditsinskaya Khimiya 62.4 (2016): 411-417.
Zamay, G. S., Belayanina, I. V., Zamay, A. S., Komarova, M. A., Krat, A. V., Eremina, E. N., Zukov, R. A., Sokolov, A. E., Zamay, T. N. (2016). DNA aptamers selection for breast cancer. Biomeditsinskaya Khimiya, 62(4), 411-417.
Watson M.A., Dintzis S., Darrow C.M. (1999) Cancer Res., 59, 3028–3031. Scholar google search
Ross J.S., Linette G.P., Stec J., Clark E., Ayers M., Leschly N., Symmans W.F., Hortobagyi G.N., Pusztai L. (2003) Expert Rev. Mol. Diagn., 3, 573-585. CrossRef Scholar google search
Zhang K., Tang L., Sefah K., Zhao Z., Zhu G., Sun W., Goodison S., Tan W. (2012) ChemMedChem, 7, 79-84. CrossRef Scholar google search
Li X., Zhang W., Liu L., Zhu Z., Ouyang G., An Y., Zhao C., Yang C.J. (2014) Anal. Chem., 86, 6596-6603. CrossRef Scholar google search
Hu Y., Duan J., Zhan Q., Wang F., Lu X., Yang X.-D. (2012) PLoS One, 7, e31970. Scholar google search
Giangrande P., McNamara J., Thiel K., Thiel W., Rockney W. (2013) HER2 Nucleaic Acid Aptamers US20130129719. Scholar google search
Lee Y.J., Kim S., Park S.-A., Kim Y., Lee J.E., Noh D.-Y., Kim K.-T., Ryu S.H., Suh P.-G. (2013) Mol. Ther., 21, 1004-1013. CrossRef Scholar google search
Yufa R., Krylova S.M., Bruce C., Bagg E.A., Schofield C.J., Krylov S.N. (2015) Anal. Chem., 87, 1411-1419. CrossRef Scholar google search
Levay A., Brenneman R., Hoinka J., Sant D., Cardone M., Trinchieri G., Przytycka T.M., Berezhnoy A. (2015) Nucl. Acids Res. doi: 10.1093/nar/gkv534. CrossRef Scholar google search