Peptide phage display in biotechnology and biomedicine
Kuzmicheva G.A.1 , Belyavskaya V.A.2
1. Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia; XBiotech USA, Austin, TX, USA 2. Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia
To date peptide phage display is one of the most common combinatorial methods used for identifying specific peptide ligands. Phage display peptide libraries containing billions different clones successfully used for selection of ligands with high affinity and selectivity toward wide range of targets including individual proteins, bacteria, viruses, spores, different kind of cancer cells and variety of nonorganic targets (metals, alloys, semiconductors etc.) Success of using filamentous phage in phage display technologies relays on the robustness of phage particles and a possibility to genetically modify its DNA to construct new phage variants with novel properties. In this review we are discussing characteristics of the most known non-commercial peptide phage display libraries of different formats (landscape libraries in particular) and their successful applications in several fields of biotechnology and biomedicine: discovery of peptides with diagnostic values against different pathogens, discovery and using of peptides recognizing cancer cells, trends in using of phage display technologies in human interactome studies, application of phage display technologies in construction of novel nano materials
Barbas C.F. III, Barton D.R., Silverman G.J. (eds.) (2001) Phage Display: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 736 p. Scholar google search
Rakonjac J., Bennett N.J., Spagnuolo J., Gagic D., Russel M. (2011) Curr. Issues Mol. Biol., 13, 51-76. Scholar google search
Loi M., Di Paolo D., Soster M., Brignole C., Bartolini A., Emionite L., Sun J., Becherini P., Curnis F., Petretto A. et al. (2013) J. Control Release, 170, 233-241. CrossRef Scholar google search
Fu B., Zhang Y., Long W., Zhang A., Zhang Y., An Y., Miao F., Nie F., Li M., He Y., Zhang J., Teng G. (2014) Biotechnol. Lett., 36, 2291-2301. CrossRef Scholar google search
Valetti S., Maione F., Mura S., Stella B., Desmaële D., Noiray M., Vergnaud J., Vauthier C., Cattel L., Giraudo E., Couvreur P. (2014) J. Control Release, 192, 29-39. CrossRef Scholar google search
Zhang Z.F., Shan X., Wang Y.X., Wang W., Feng S.Y., Cui Y.B. (2014) J. Cardiothorac. Surg., 9, 76-83. CrossRef Scholar google search
Chang D.K., Lin C.T., Wu C.H., Wu H.C. (2009) PLoS One., 4, e4171, 1-11. Scholar google search
Perea S.E., Reyes O., Baladron I., Perera Y., Farina H., Gil J., Rodriguez A., Bacardi D., Marcelo J.L., Cosme K. et al. (2008) Mol. Cell Biochem., 316, 163-167. CrossRef Scholar google search
Denisov S.G., Beliavskaia V.A., Voevoda M.I. (2001) Mol. Gen. Mikrobiol. Virusol., 2, 19-24. Scholar google search
Ivarsson Y., Arnold R., McLaughlin M., Nim S., Joshi R., Ray D., Liu B., Teyra J., Pawson T., Moffat J., Li S.S., Sidhu S.S., Kim P.M. (2014) Proc. Natl. Acad. Sci. USA, 111, 2542-2547. CrossRef Scholar google search
Nam K.T., Kim D.W., Yoo P.J., Chiang C.Y., Meethong N., Hammond P.T., Chiang Y.M., Belcher A.M. (2006) Science., 312, 885-888. CrossRef Scholar google search
Lower B.H., Lins R.D., Oestreicher Z., Straatsma T.P., Hochella M.F. Jr., Shi L., Lower S.K. (2008) Environ. Sci. Technol., 42, 3821-3827. CrossRef Scholar google search
Mao C., Flynn C.E., Hayhurst A., Sweeney R., Qi J., Georgiou G., Iverson B., Belcher A.M. (2003) Proc. Natl. Acad. Sci. USA, 100, 6946-6951. CrossRef Scholar google search
Mao C., Solis D.J., Reiss B.D., Kottmann S.T., Sweeney R.Y., Hayhurst A., Georgiou G., Iverson B., Belcher A.M. (2004) Science, 303, 213-217. CrossRef Scholar google search