Cardiovascular diseases (CVD) remain the leading cause of death in industrialized countries. One of the most significant risk factors for atherosclerosis is hypercholesterolemia. Its diagnostics is based on routine lipid profile analysis, including the determination of total cholesterol, low and high density lipoprotein cholesterol, and triglycerides. However in recent years, much attention has been paid to the crosstalk between the metabolic pathways of the cholesterol and sphingolipids biosynthesis. Sphingolipids are a group of lipids, containing a molecule of aliphatic alcohol sphingosine. These include sphingomyelins, cerebrosides, gangliosides and ceramides, sphingosines, and sphingosine-1-phosphate (S-1-P). It has been found that catabolism of sphingolipids is associated with catabolism of cholesterol. However, the exact mechanism of this interaction is still unknown. Particular attention as CVD inducer attracts ceramide (Cer). Lipoprotein aggregates isolated from atherosclerotic pluques are enriched with Cer. The level of Cer and sphingosine increases after ischemia reperfusion of the heart, in the infarction zone and in the blood, and also in hypertension. S-1-P exhibits pronounced cardioprotective properties. Its content sharply decreases with ischemia and myocardial infarction. S-1-P presents predominantly in HDL, and influences their multiple functions. Increased levels of Cer and sphingosine and decreased levels of S-1-P formed in the course of coronary heart disease can be an important factor in the development of atherosclerosis. It is proposed to use determination of sphingolipids in blood plasma as markers for early diagnosis of cardiac ischemia and for hypertension in humans. There are intensive studies aimed at correction of metabolism S-1-P. The most successful drugs are those that use S-1-P receptors as a targets, since all of its actions are receptor-mediated.
Alessenko A.V., Lebedev A.T., Kurochkin I.N. (2018) The role of sphingolipids in cardiovascular pathologies. Biomeditsinskaya Khimiya, 64(6), 487-495.
Alessenko A.V. et al. The role of sphingolipids in cardiovascular pathologies // Biomeditsinskaya Khimiya. - 2018. - V. 64. -N 6. - P. 487-495.
Alessenko A.V. et al., "The role of sphingolipids in cardiovascular pathologies." Biomeditsinskaya Khimiya 64.6 (2018): 487-495.
Alessenko, A. V., Lebedev, A. T., Kurochkin, I. N. (2018). The role of sphingolipids in cardiovascular pathologies. Biomeditsinskaya Khimiya, 64(6), 487-495.
Pan W., Yu J., Shi R., Yan L., Yang T., Li Y., Zhang Z., Yu G., Bai Y., Schuchman E.H., He X., Zhang G. (2014) Coron. Artery Dis., 25, 230-235. CrossRef Scholar google search
Pruett S.T., Bushnev A., Hagedorn K., Adiga M., Haynes C.A., Sullards M.C., Liotta D.C., Merrill A.H. Jr. (2008) J. Lipid Res., 49, 1621-1639. CrossRef Scholar google search
Knapp M., Zendzian-Piotrowska M., Blachnio-Zabielska A., Zabielski P., Kurek K., Górski J. (2012) Basic Res. Cardiol., 107, 294. CrossRef Scholar google search
Egom E.E., Mamas M.A., Chacko S., Stringer S.E., Charlton-Menys V., El-Omar M. et al. (2013) Front. Physiol., 4, 130-136. CrossRef Scholar google search
Usta E., Mustafi M., Artunc F., Walker T. Voth V., Aebert H., Ziemer G. (2011) J. Cardiothor. Surg., 6, 38-45. CrossRef Scholar google search
Cavalli A.M., Ligutti J.A., Gellings N.M. et al. (2002) Basic Appl. Myol., 12, 167-175. Scholar google search
Deutschman D.H., Carstens J.S., Klepper R.L., Smith W.S., Page M.T., Young T.R. et al. (2003) Am. Heart J., 146, 62-68. CrossRef Scholar google search
Vessey D.A., Li L., Kelley M., Zhang J., Karliner J.S. (2008) J. Biochem. Mol. Toxicol., 22, 113-118. CrossRef Scholar google search
Soltau I., Mudersbach E., Geissen M., Schwedhelm E., Winkler M.S., Geffken M., Peine S., Schoen G., Debus E.S., Larena-Avellaneda A., Daum G. (2016) PLoS One, 11(12), e0168302. CrossRef Scholar google search
Theilmeier G., Schmidt C., Herrmann J., Keul P., Schafers M., Herrgott I., Mersmann J., Larmann J., Hermann S., Stypmann J., Schober O., Hildebrand R., Schulz R., Heusch G., Haude M. et al. (2006) Circulation, 114, 1403-1409. CrossRef Scholar google search
Feuerborn R., Becker S., Poti F., Nagel P., Brodde M., Schmidt H., Christoffersen C., Ceglarek U., Burkhardt R., Nofer J.R. (2017) Atherosclerosis, 257, 29-37. CrossRef Scholar google search
Nofer J.R., van der Giet M., Tolle M., Wolinska I., von Wnuck Lipinski K., Baba H.A., Tietge U.J., Godecke A., Ishii I., Kleuser B., Schafers M., Fobker M., Zidek W., Assmann G., Chun J., Levkau B. (2004) J. Clin. Invest., 113, 569-581. CrossRef Scholar google search
Sattler K.J., Elbasan S., Keul P., Elter-Schulz M., Bode C., Graler M.H., Brocker-Preuss M., Budde T., Erbel R., Heusch G., Levkau B. (2010) Basic Res. Cardiol., 105, 821-832. CrossRef Scholar google search
Hofmann U., Burkard N., Vogt C., Thoma A., Frantz S., Ertl G. et al. (2009) Cardiovasc. Res. 83, 285-293. CrossRef Scholar google search
Egom E.E., Ke Y., Musa H., Mohamed T.M., Wang T., Cartwright E. et al. (2010) J. Mol. Cell. Cardiol., 48, 406-414. CrossRef Scholar google search
Santos-Gallego C.G., Vahl T.P., Goliasch G., Picatoste B., Arias T., Ishikawa K. et al. (2016) Circulation, 133, 954-966. CrossRef Scholar google search
Goltz D., Huss S., Ramadori E., Büttner R., Diehl L., Meyer R. (2015) Clin. Exp. Pharmacol. Physiol., 42, 1168-1177. CrossRef Scholar google search
Means C.K., Xiao C.Y., Li Z., Zhang T., Omens J.H., Ishii I. et al. (2007) Am. J. Physiol. Heart. Circ. Physiol., 292, H2944-H2951. CrossRef Scholar google search
Sugahara K., Maeda Y., Shimano K., Mogami A., Kataoka H., Ogawa K. et al. (2017) Br. J. Pharmacol., 174, 15-27. CrossRef Scholar google search