Due to the widespread prevalence, deoxyuridine triphosphatase (UTPase) is considered by modern biochemists and physicians as a promising target for the development of drugs with a wide range of activities. The therapeutic effect of these drugs will be due to suppression of DNA biosynthesis in various viruses, bacteria and protozoa. In order to rationalize the search for new dUTPase inhibitors, domestic and foreign researchers are actively using the QSAR methodology at the selection stage of hit compounds. However, the practical application of this methodology is impossible without existence of valid QSAR models. With the use of the GUSAR 2013 program, a quantitative analysis of the relationship between the structure and efficacy of 135 dUTPase inhibitors based on uracil derivatives was performed in the IC50 range of 30¸185000 nmol/L. Six statistically significant valid consensus models, characterized by high descriptive ability and moderate prognostic ability on the structures of training and test samples, are constructed. To build valid QSAR models for dUTPase inhibitors can use QNA or MNA descriptors and their combinations in a consensus approach.
Martynova Yu.Z., Khairullina V.R., Gimadieva A.R., Mustafin A.G. (2019) QSAR-modeling of desoxyuridine triphosphatase inhibitors in a series of some derivatives of uracil. Biomeditsinskaya Khimiya, 65(2), 103-113.
Martynova Yu.Z. et al. QSAR-modeling of desoxyuridine triphosphatase inhibitors in a series of some derivatives of uracil // Biomeditsinskaya Khimiya. - 2019. - V. 65. -N 2. - P. 103-113.
Martynova Yu.Z. et al., "QSAR-modeling of desoxyuridine triphosphatase inhibitors in a series of some derivatives of uracil." Biomeditsinskaya Khimiya 65.2 (2019): 103-113.
Martynova, Yu. Z., Khairullina, V. R., Gimadieva, A. R., Mustafin, A. G. (2019). QSAR-modeling of desoxyuridine triphosphatase inhibitors in a series of some derivatives of uracil. Biomeditsinskaya Khimiya, 65(2), 103-113.
References
Tóth J., Varga B., Kovács M., Málnási-Csizmadia A., Vértessy B.G. (2007) J. Biol. Chem., 282(4), 33572-33582. CrossRef Scholar google search
Shlomai J., Kornberg, A. (1978) J. Biol. Chem., 253(9), 3305-3312. Scholar google search
Gadsden M.H., McIntosh E.M., Game J.C., Wilson P.J., Haynes R.H. (1993) EMBO J. 12(11), 4425-4431. CrossRef Scholar google search
Chano T., Mori K., Scotlandi K., Benini S., Lapucci C., Manara M.C., Serra M., Picci P., Okabe H., Baldini N. (2004) J. Oncol. Rep., 11(6), 1257-1263. Scholar google search
Ladner R.D., Lynch F.J., Groshen S., Xiong Y.P., Sherrod A., Caradonna S.J., Stoehlmacher J., Lenz H.J. (2000) J. Cancer Res., 60, 3493-3503. Scholar google search
Romeike B.F., Bockeler A., Kremmer E., Sommer P., Krick C., Grasser F. (2005) J. Pathol. Res. Pract., 201(11), 727-732. CrossRef Scholar google search
Miyakoshi H., Miyahara S., Yokogawa T., Chong Kh.T., Taguchi J., Endoh K., Yano W., Wakasa T., Ueno H., Takao Y., Nomura M., Shuto S., Nagasawa H., Fukuoka M. (2012) J. Med. Chem., 55(7), 2960-2969. CrossRef Scholar google search
Miyahara S., Miyakoshi H., Yokogawa T., Chong Kh.T., Taguchi J., Muto T., Endoh K., Yano W., Wakasa T., Ueno H., Takao Y., Fujioka A., Hashimoto A., Itou K., Yamamura K., Nomura M., Nagasawa H., Shuto S., Fukuoka M. (2012) J. Med. Chem., 55(7), 2970-2980. CrossRef Scholar google search
Fukuoka M., Yokogawa T., Miyahara S., Miyakoshi H., Yano W., Taguchi J., Takao Y. (2013) Patent №8530490 B2 US, Appl. №12/996,079, United States Patent, 10.09.2013. Scholar google search