1. Institute of Biomedical Chemistry, Moscow, Russia 2. Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia 3. Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia 4. Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Mass spectrometric proteomic analysis at the sample preparation stage involves the artificial reduction of disulfide bonds in proteins formed between cysteine residues. Such bonds, when preserved in their native state, complicate subsequent enzymatic hydrolysis and interpretation of the research results. To prevent the re-formation of the disulfide bonds, cysteine residues are protected by special groups, most often by alkylation. In this review, we consider the methods used to modify cysteine residues during sample preparation, as well as possible artifacts of this stage. Particularly, adverse reactions of the alkylating agents with other amino acid residues are described. The most common alkylating compound used to protect cysteine residues in mass spectrometric proteomic analysis is iodoacetamide. However, an analysis of the literature in this area indicates that this reagent causes more adverse reactions than other agents used, such as chloroacetamide and acrylamide. The latter can be recommended for wider use. In the review we also discuss the features of the cysteine residue modifications and their influence on the efficiency of the search for post-translational modifications and protein products of single nucleotide substitutions.
Download PDF:
Keywords: proteomics, sample preparation, alkylation, cysteine, mass spectrometry
Citation:
Kuznetsova K.G., Solovyeva E.M., Kuzikov A.V., Gorshkov M.V., Moshkovskii S.A. (2020) Modification of cysteine residues for mass spectrometry-based proteomic analysis: facts and artifacts. Biomeditsinskaya Khimiya, 66(1), 18-29.
Kuznetsova K.G. et al. Modification of cysteine residues for mass spectrometry-based proteomic analysis: facts and artifacts // Biomeditsinskaya Khimiya. - 2020. - V. 66. -N 1. - P. 18-29.
Kuznetsova K.G. et al., "Modification of cysteine residues for mass spectrometry-based proteomic analysis: facts and artifacts." Biomeditsinskaya Khimiya 66.1 (2020): 18-29.
Kuznetsova, K. G., Solovyeva, E. M., Kuzikov, A. V., Gorshkov, M. V., Moshkovskii, S. A. (2020). Modification of cysteine residues for mass spectrometry-based proteomic analysis: facts and artifacts. Biomeditsinskaya Khimiya, 66(1), 18-29.
Verheggen K., Martens L., Berven F.S., Barsnes H., Vaudel M. (2016) Adv. Exper. Med. Biol., 919, 147-156. CrossRef Scholar google search
Silva A.S., Bouwmeester R., Martens L., Degroeve S. (2019) Bioinformatics, 35(24), 5243-5248. CrossRef Scholar google search
Tiwary S., Levy R., Gutenbrunner P., Salinas Soto F., Palaniappan K.K., Deming L., Berndl M., Brant A., Cimermancic P., Cox J. (2019) Nature Methods, 16(6), 519-525. CrossRef Scholar google search
Gundry R.L., White M.Y., Murray C.I., Kane L.A., Fu Q., Stanley B.A., van Eyk J.E. (2009) Curr. Prot. Mol. Biol., 77(5), 342-355. Scholar google search
Nielsen M.L., Vermeulen M., Bonaldi T., Cox J., Moroder L., Mann M. (2008) Nature Methods, 5(6), 459-460. CrossRef Scholar google search
Sebastiano R., Citterio A., Lapadula M., Righetti P.G. (2003) Rapid Communications Mass Spectrometry, 17(21), 2380-2386. CrossRef Scholar google search
Paulech J., Solis N., Cordwell S.J. (2013) Biochim.Biophys. Acta - Proteins and Proteomics, 1834(1), 372-379. CrossRef Scholar google search
Xu P., Duong D.M., Seyfried N.T., Cheng D., Xie Y., Robert J., Rush J., Hochstrasser M., Finley D., Peng J. (2009) Cell, 137(1), 133-145. CrossRef Scholar google search
Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B.A., Thiessen P.A., Yu B., Zaslavsky L., Zhang J., Bolton E.E. (2019) Nucl. Acids Res., 47(D1), D1102-D1109. CrossRef Scholar google search
Woods A.G., Sokolowska I., Darie C.C. (2012) Biochem. Biophys. Res. Commun., 419(2), 305-308. CrossRef Scholar google search
Krüger R., Hung C.W., Edelson-Averbukh M., Lehmann W.D. (2005) Rapid Communications Mass Spectrometry, 19(12), 1709-1716. CrossRef Scholar google search
Lagerwerf F.M., van de Weert M., Heerma W., Haverkamp J. (1996) Rapid Communications Mass Spectrometry, 10(15), 1905-1910. CrossRef Scholar google search
Stes E., Laga M., Walton A., Samyn N., Timmerman E., de Smet I., Goormachtig S., Gevaert K. (2014) J. Proteome Res., 13(6), 3107-3113. CrossRef Scholar google search
Zhang B., Pirmoradian M., Chernobrovkin A., Zubarev R.A. (2014) Mol. Cell. Proteomics, 13(11), 3211-3223. CrossRef Scholar google search
Hill B.G., Reily C., Oh J.Y., Johnson M.S., Landar A. (2009) Free Rad. Biol. Med., 47(6), 675-683. CrossRef Scholar google search
Scheerlinck E., Dhaenens M., van Soom A., Peelman L., de Sutter P., van Steendam K., Deforce D. (2015) Anal. Biochem., 490, 14-19. CrossRef Scholar google search