Good evidence exists that the ubiquitin-proteasome system (UPS) plays an important role in degradation of mitochondrial proteins and membrane proteins associated with mitochondria (MAM proteins). Mitochondria contain all components of the ubiquitin-conjugating system, which are necessary for the attachment of ubiquitin molecules to target proteins, subjected to subsequent degradation in proteasomes. An important stage in the delivery of proteins for proteolytic degradation in proteasomes is their interaction with ubiquitin receptors located on the regulatory subunit (19S) of the proteasome: the Rpn10 or Rpn13 subunit. These subunits make basically the same contribution to the subsequent translocation of target proteins to the core part of the proteasome. A comparative study of mouse brain mitochondrial subproteomes bound to Rpn10 and Rpn13 subunits revealed a high specificity of the repertoire of Rpn10 and Rpn13-binding proteins. Moreover, proteins, for which mitochondrial localization or association with mitochondrial membranes was previously shown, prevailed in the case of using the Rpn13 subunit as an affinity ligand (Rpn13-binding proteins). This suggests that Rpn10 and Rpn13 play different roles in the degradation of mitochondrial proteins and MAM.
Download PDF:
Keywords: ubiquitin-proteasome system, Rpn10- and Rpn13-binding proteins, mitochondrial fraction of the brain, subproteome
Citation:
Buneeva O.A., Kopylov A.T., Medvedev A.E. (2020) Qualitative difference of mitochondrial subproteoms of brain RPN10- and RPN13-binding proteins. Biomeditsinskaya Khimiya, 66(2), 138-144.
Buneeva O.A. et al. Qualitative difference of mitochondrial subproteoms of brain RPN10- and RPN13-binding proteins // Biomeditsinskaya Khimiya. - 2020. - V. 66. -N 2. - P. 138-144.
Buneeva O.A. et al., "Qualitative difference of mitochondrial subproteoms of brain RPN10- and RPN13-binding proteins." Biomeditsinskaya Khimiya 66.2 (2020): 138-144.
Buneeva, O. A., Kopylov, A. T., Medvedev, A. E. (2020). Qualitative difference of mitochondrial subproteoms of brain RPN10- and RPN13-binding proteins. Biomeditsinskaya Khimiya, 66(2), 138-144.
Lavie J., De Belvalet H., Sonon S., Ion A.M., Dumon E., Melser S., Lacombe D., Dupuy J.W., Lalou C., Bénard G. (2018) Cell Reports, 23, 2852-2863. CrossRef Scholar google search
Nakagawa T., Shirane M., Iemura S., Natsume T., Nakayama K. (2007) Genes Cells, 12, 709-719. Scholar google search
Saeki Y. (2017) J. Biochem., 161(2), 113-124. 9 Tanaka K. (2009) Proc. Jpn. Acad., Ser. B, 85, 12-36. 10. Kish-Trier E., Hill C.P. (2013) Annu. Rev. Biophys., 42, 29-49. 11. . Scholar google search
Martinez-Fonts K., Davis C., Tomita T., Elsasser S., Nager A.R., Shi Y., Finley D., Matouschek A. (2020) Nat. Commun., 11, 477. CrossRef Scholar google search
Hamazaki J., Sasaki K., Kawahara H., Hisanaga S., Tanaka K., Murata S. (2007) Mol. Cell. Biol., 27(19), 6629-6638. CrossRef Scholar google search