1. Center for Immunology and Cellular Biotechnology of the Immanuel Kant Baltic Federal University, Kaliningrad, Russia 2. Division of Pathophysiology Siberian State Medical University, Tomsk, Russia 3. Department of Morphology and General Pathology Siberian State Medical University, Tomsk, Russia; Research School of Chemistry and Applied Biomedical Sciences National Research Tomsk Polytechnic University, Tomsk, Russia
The review discusses the complex, ambiguous and individual effects of heparin and its derivatives on the bone and circulatory systems, in dependence of the dosage, the state of the cells and tissues of recipients. General data on the anticoagulant activity of heparin and its derivatives are presented; aspects of the effect of heparin on mesenchymal cells and tissues and its role in angiogenesis are considered in details. Particular attention is paid to the ability of heparin to bind osteogenic and angiogenic biomolecules: thus us especially important for the development of systems for their delivery and sustained controlled release. A schematic representation of the positive and side effects of heparin as a delivery system for biomolecules in tissue engineering is proposed.
Download PDF:
Keywords: heparin, anticoagulant, bone tissue bioengineering, delivery system, regenerative medicine, hemostasis system
Citation:
Litvinova L.S., Yurova K.A., Khaziakhmatova O.G., Khlusova M.Yu., Malashchenko V.V., Shunkin E.O., Todosenko N.M., Norkin I.K., Ivanov P.A., Khlusov I.A. (2020) Osteogenic and angiogenic properties of heparin as a system of biomolecule delivery for bone bioengineering: a brief critical review. Biomeditsinskaya Khimiya, 66(6), 431-436.
Litvinova L.S. et al. Osteogenic and angiogenic properties of heparin as a system of biomolecule delivery for bone bioengineering: a brief critical review // Biomeditsinskaya Khimiya. - 2020. - V. 66. -N 6. - P. 431-436.
Litvinova L.S. et al., "Osteogenic and angiogenic properties of heparin as a system of biomolecule delivery for bone bioengineering: a brief critical review." Biomeditsinskaya Khimiya 66.6 (2020): 431-436.
Litvinova, L. S., Yurova, K. A., Khaziakhmatova, O. G., Khlusova, M. Yu., Malashchenko, V. V., Shunkin, E. O., Todosenko, N. M., Norkin, I. K., Ivanov, P. A., Khlusov, I. A. (2020). Osteogenic and angiogenic properties of heparin as a system of biomolecule delivery for bone bioengineering: a brief critical review. Biomeditsinskaya Khimiya, 66(6), 431-436.
Ling L., Camilleri E.T., Helledie N., Samsonraj R., Titmarsh D.M., Chua R.J., Dreesen O., Dombrowski C., Rider D.A., Galindo M., Lee I., Hong W., Hui J.H., Nurcombe V., van Wijnen A.J., Cool S.M. (2016) Gene, 576(1Pt2), 292-303. CrossRef Scholar google search
Shore-Lesserson L., Baker R.A., Ferraris V., Greilich P.E., Fitzgerald D., Roman P., Hammon J. (2018) J. Extra Corpor. Technol., 50(1), 5-18. Scholar google search
Khan S.A., Nelson M.S., Pan C., Gaffney P.M., Gupta P. (2008) Am. J. Physiol. Cell Physiol., 294(6), 1387-1397. CrossRef Scholar google search
Brkljacic J., Pauk M., Erjavec I., Cipcic A., Grgurevic L., Zadro R., Inman G.J., Vulicevic S. (2013) Int. Orthop., 37(3), 529-541. CrossRef Scholar google search
Rodriges E.M., Cornelio A.L.G., Godoi P.H., da Costa P.I., Rossa-Junior C., Faria G., Guerreiro Tanomaru J.M., Tanomaru-Filho M. (2019) Int. Endod. J., 52(6), 829-837. CrossRef Scholar google search
Quade M., Knaack S., Weber D., Konig U., Paul B., Simon P., Rossen-Wolf A., Schwartz-Albiez R., Gtlinsky M., Lode A. (2017) Eur. Cell Mater., 33, 105-120. CrossRef Scholar google search
Irie A., Takami M., Kubo H., Sekino-Suzuki N., Kasahara K., Sanai Y. (2007) Bone, 41, 165-174. CrossRef Scholar google search
Leppänen V.M., Tvorogov D., Kisko K., Prota A.E., Jeltsch M., Anisimov A. (2013) Proc. Natl. Acad. Sci. USA, 110, 12960-12965. CrossRef Scholar google search
Kim J.Y., Al-Hilal T.A., Chung S.W., Kim S.Y., Ryu G.H., Son W.C. (2015) J. Control Release, 199, 122-131. CrossRef Scholar google search
Sun T., Liu M., Yao S., Ji Y., Shi L., Tang K., Xiong Z., Yang F., Chen K., Guo X. (2018) Int. J. Nanomedicine, 13, 791-804. CrossRef Scholar google search