1. Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia 2. Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia; Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Russia 3. The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia 4. The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia; State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia 5. Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia 6. Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
Antibiotic resistance of bacteria is a topical problem on a global scale. Sometimes vigorous human activity leads to an increase in the number of bacteria carrying resistance genes in the environment. Antimicrobial peptides (AMPs) and similar compounds are potential candidates for combating antibiotic-resistant bacteria. Previously, we proposed and successfully tested on Thermus thermophilus a new mechanism of AMP action. This mechanism of directed coaggregation is based on the interaction of a peptide capable of forming fibrils with a target protein. In this work, we discuss the criteria for choosing a target for the targeted action of AMP, describe the features of the “parental” S1 ribosomal proteins T. thermophilus and Escherichia coli and the studied peptides using bioinformatic analysis methods, assess the antimicrobial effect of the synthesized peptides on a model organism of E. coli and cytotoxicity on cells of human fibroblasts. The obtained results will be important for the creation of new AMPs for pathogenic organisms.
Kurpe S.R., Grishin S.Yu., Glyakina A.V., Slizen M.V., Panfilov A.V., Kochetov A.P., Surin A.K., Kobyakova M.I., Fadeev R.S., Galzitskaya O.V. (2021) Antibacterial effects of peptides synthesized based on the sequence of ribosome protein S1. Biomeditsinskaya Khimiya, 67(3), 231-243.
Kurpe S.R. et al. Antibacterial effects of peptides synthesized based on the sequence of ribosome protein S1 // Biomeditsinskaya Khimiya. - 2021. - V. 67. -N 3. - P. 231-243.
Kurpe S.R. et al., "Antibacterial effects of peptides synthesized based on the sequence of ribosome protein S1." Biomeditsinskaya Khimiya 67.3 (2021): 231-243.
Kurpe, S. R., Grishin, S. Yu., Glyakina, A. V., Slizen, M. V., Panfilov, A. V., Kochetov, A. P., Surin, A. K., Kobyakova, M. I., Fadeev, R. S., Galzitskaya, O. V. (2021). Antibacterial effects of peptides synthesized based on the sequence of ribosome protein S1. Biomeditsinskaya Khimiya, 67(3), 231-243.
References
McEwen S.A., Collignon P.J. (2018) in: Antimicrobial Resistance in Bacteria from Livestock and Companion Animals: Antimicrobial Resistance: a One Health Perspective (Schwarz S., Cavaco L.M., Shen J., eds.), ASM Press, Washington, pp. 521-547. CrossRef Scholar google search
Fields F.R., Freed S.D., Carothers K.E., Hamid M.N., Hammers D.E., Ross J.N., Kalwajtys V.R., Gonzalez A.J., Hildreth A.D., Friedberg I. et al. (2020) Drug Dev. Res., 81, 43-51. CrossRef Scholar google search
Rajkumari J., Dyavaiah M., Syed A., Siddhardha B. (2020) in: Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery: Model Organisms and Antimicrobial Drug Discovery (Siddhardha B., Dyavaiah M., Syed A., eds.), Springer Singapore, Singapore, pp. 527-543. CrossRef Scholar google search
Pirtskhalava M., Amstrong A.A., Grigolava M., Chubinidze M., Alimbarashvili E., Vishnepolsky B., Gabrielian A., Rosenthal A., Hurt D.E., Tartakovsky M. (2021) Nucleic Acids Res., 49, D288-D297. CrossRef Scholar google search
Grishin S., Deryusheva E., Machulin A., Selivanova O., Glyakina A., Gorbunova E., Mustaeva L., Azev V., Rekstina V., Kalebina T., Surin A., Galzitskaya O. (2020) Int. J. Mol. Sci., 21(15), 5199. CrossRef Scholar google search
Jhong J.H., Chi Y.H., Li W.C., Lin T.H., Huang K.Y., Lee T.Y. (2019) Nucleic Acids Res., 47, D285-D297. CrossRef Scholar google search
Console S., Marty C., García-Echeverría C., Schwendener R., Ballmer-Hofer K. (2003) J. Biol. Chem., 278, 35109-35114. CrossRef Scholar google search
Dathe M., Wieprecht T., Nikolenko H., Handel L., Maloy W.L., MacDonald D.L., Beyermann M., Bienert M. (1997) FEBS Lett., 403, 208-212. CrossRef Scholar google search
Lázár V., Martins A., Spohn R., Daruka L., Grézal G., Fekete G., Számel M., Jangir P.K., Kintses B., Csörgő B. et al. (2018) Nat. Microbiol., 3, 718-731. CrossRef Scholar google search
Liu Y.-Y., Chandler C.E., Leung L.M., McElheny C.L., Mettus R.T., Shanks R.M.Q., Liu J.-H., Goodlett D.R., Ernst R.K., Doi Y. (2017) Antimicrob. Agents Chemother., 61(6), e00580-17. CrossRef Scholar google search