Development of antiviral drugs based on inhibitors of the SARS-COV-2 main protease

   
Sulimov A.V.1, Shikhaliev Kh.S.2, Pyankov O.V.3, Shcherbakov D.N.4, Chirkova V.Yu.5, Ilin I.S.1, Kutov D.C.1, Tashchilova A.S.1, Krysin M.Yu.2, Krylskiy D.V.2, Stolpovskaya N.V.2, Volosnikova E.A.3, Belenkaya S.V.6, Sulimov V.B.1

1. Research Computer Center of Lomonosov Moscow State University, Moscow, Russia; Dimonta Ltd., Moscow, Russia
2. Voronezh State University, Voronezh, Russia
3. State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Russia
4. State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Russia; Altai State University, Barnaul, Russia
5. Altai State University, Barnaul, Russia
6. State Research Centre of Virology and Biotechnology “Vector”, Koltsovo, Russia; Novosibirsk State University, Novosibirsk, Russia
Section: Experimental Study
DOI: 10.18097/PBMC20216703259      PubMed Id: 34142533
Year: 2021  Volume: 67  Issue: 3  Pages: 259-267
Docking and quantum-chemical methods have been used for screening of drug-like compounds from the own database of the Voronezh State University to find inhibitors the SARS-CoV-2 main protease, an important enzyme of the coronavirus responsible for the COVID-19 pandemic. Using the SOL program more than 42000 3D molecular structures were docked into the active site of the main protease, and more than 1000 ligands with most negative values of the SOL score were selected for further processing. For all these top ligands, the protein-ligand binding enthalpy has been calculated using the PM7 semiempirical quantum-chemical method with the COSMO implicit solvent model. 20 ligands with the most negative SOL scores and the most negative binding enthalpies have been selected for further experimental testing. The latter has been made by measurements of the inhibitory activity against the main protease and suppression of SARS-CoV-2 replication in a cell culture. The inhibitory activity \of the compounds was determined using a synthetic fluorescently labeled peptide substrate including the proteolysis site of the main protease. The antiviral activity was tested against SARS-CoV-2 virus in the Vero cell culture. Eight compounds showed inhibitory activity against the main protease of SARS-CoV-2 in the submicromolar and micromolar ranges of the IC50 values. Three compounds suppressed coronavirus replication in the cell culture at the micromolar range of EC50 values and had low cytotoxicity. The found chemically diverse inhibitors can be used for optimization in order to obtain a leader compound, the basis of new direct-acting antiviral drugs against the SARS-CoV-2 coronavirus.
Download PDF:  
Keywords: drug discovery, docking, quantum chemistry, SARS-CoV-2, Mpro, inhibitors, antiviral drugs, COVID-19, CADD
Citation:

Sulimov, A. V., Shikhaliev, Kh. S., Pyankov, O. V., Shcherbakov, D. N., Chirkova, V. Yu., Ilin, I. S., Kutov, D. C., Tashchilova, A. S., Krysin, M. Yu., Krylskiy, D. V., Stolpovskaya, N. V., Volosnikova, E. A., Belenkaya, S. V., Sulimov, V. B. (2021). Development of antiviral drugs based on inhibitors of the SARS-COV-2 main protease. Biomeditsinskaya Khimiya, 67(3), 259-267.
References  
 2024 (vol 70)
 2023 (vol 69)
 2022 (vol 68)
 2021 (vol 67)
 2020 (vol 66)
 2019 (vol 65)
 2018 (vol 64)
 2017 (vol 63)
 2016 (vol 62)
 2015 (vol 61)
 2014 (vol 60)
 2013 (vol 59)
 2012 (vol 58)
 2011 (vol 57)
 2010 (vol 56)
 2009 (vol 55)
 2008 (vol 54)
 2007 (vol 53)
 2006 (vol 52)
 2005 (vol 51)
 2004 (vol 50)
 2003 (vol 49)