1. Institute of Biomedical Chemistry, Moscow, Russia; Medico-biological Faculty, Pirogov Russian National Research Medical University, Moscow, Russia 2. Institute of Biomedical Chemistry, Moscow, Russia
Metabolic stability refers to the susceptibility of compounds to the biotransformation; it is characterized by such pharmacokinetic parameters as half-life (T1/2) and clearance (CL). Generally, these parameters are estimated by in vitro assays, which are based on cells or subcellular fractions (mainly liver microsomal enzymes) and serve as models of the processes occurring in living organisms. Data obtained from the experiments are used to build QSAR (Quantitative Structure-Activity Relationship) models. More than 8000 compounds with known CL and/or T1/2 values obtained in vitro using human liver microsomes were selected from the freely available ChEMBL v.27 database. GUSAR (General Unrestricted Structure-Activity Relationships) and PASS (Prediction of Activity Spectra for Substances) softwares were used to make quantitative and classification models. The quality of the models was evaluated using 5-fold cross-validation. Compounds were subdivided into “stable” and “unstable” by means of the following threshold parameters: T1/2 = 30 minutes, CL = 20 ml/min/kg. The accuracy of the models ranged from 0.5 (calculated in 5-fold CV on the test set for the half-life prediction quantitative model) to 0.96 (calculated in 5-fold CV on the test set for the clearance prediction classification model).
Korotkevich E.I., Rudik A.V., Dmitriev A.V., Lagunin A.A., Filimonov D.A. (2021) Predict of metabolic stability of xenobiotics by the PASS and GUSAR programs. Biomeditsinskaya Khimiya, 67(3), 295-299.
Korotkevich E.I. et al. Predict of metabolic stability of xenobiotics by the PASS and GUSAR programs // Biomeditsinskaya Khimiya. - 2021. - V. 67. -N 3. - P. 295-299.
Korotkevich E.I. et al., "Predict of metabolic stability of xenobiotics by the PASS and GUSAR programs." Biomeditsinskaya Khimiya 67.3 (2021): 295-299.
Korotkevich, E. I., Rudik, A. V., Dmitriev, A. V., Lagunin, A. A., Filimonov, D. A. (2021). Predict of metabolic stability of xenobiotics by the PASS and GUSAR programs. Biomeditsinskaya Khimiya, 67(3), 295-299.
Esaki T., Watanabe R., Kawashima H., Ohashi R., Natsume-Kitatani Y., Nagao C., Mizuguchi K. (2018) Mol. Inform., 38, 1-11. CrossRef Scholar google search
Słoczyńska K., Gunia-Krzyżak A., Koczurkiewicz P., Wójcik-Pszczoła K., Żelaszczyk D., Popiół J., Pękala E. (2019) Acta. Pharm., 69(3), 345-361. CrossRef Scholar google search
Williamson B., Wilson C., Dagnell G., Riley R. (2017) J. Pharmacol. Toxicol. Methods, 84, 31-36. CrossRef Scholar google search
Mendez D., Gaulton A., Bento P., Chambers J., de Veij M., Félix E., Magariños M.P., Mosquera J.F., Mutowo P., Nowotka M., Gordillo-Marañón M., Hunter F., Junco L., Mugumbate G., Rodriguez-Lopez M., Atkinson F., Bosc N., Radoux C., Segura-Cabrera A., Hersey A., Leach A. (2019) Nucleic Acids Res., 47, 930-940. CrossRef Scholar google search
Bosc N., Atkinson F., Felix E., Gaulton A., Hersey A., Leach A.R. (2019) J. Cheminform., 11, 4. CrossRef Scholar google search
Gupta R., Gifford E., Liston T., Waller C., Hohman M., Bunin B., Ekins S. (2010) Drug Metab. Dispos., 38(11), 2083-2090. CrossRef Scholar google search
Lee P., Cucurull-Sanchez L., Lu J., Du Y. (2007) J. Comput.-Aided Mol. Des., 21(12), 665-673. CrossRef Scholar google search
Sakiyama Y., Yuki H., Moriya T., Hattori K., Suzuki M., Shimada K., Honma T. (2008) J. Mol. Graph. Model, 26(6), 907-915. CrossRef Scholar google search
Hu Y., Unwalla R., Denny R., Bikker J., Di L., Humblet C. (2010) J. Comput.-Aided Mol. Des., 24(1), 23-35. CrossRef Scholar google search
Zakharov A., Peach M., Sitzmann M., Filippov I., McCartney H., Smith L., Pugliese A., Nicklaus M. (2012) Future Med. Chem., 4(15), 1933-1944. CrossRef Scholar google search
Schwaighofer A., Schroeter T., Mika S., Hansen K., Ter Laak A., Lienau P., Reichel A., Heinrich N., Müller K.R. (2008) J. Chem. Inf. Model., 48(4), 785-796. CrossRef Scholar google search
Dong J., Wang N., Yao Z., Zhang L., Cheng Y., Ouyang D., Lu A., Cao D. (2018) J. Cheminform., 10(1), 29. CrossRef Scholar google search
Visser U., Abeyruwan S., Vempati U., Smith R., Lemmon V., Schurer S. (2011) BMC Bioinformatics, 12, 257. CrossRef Scholar google search
Filimonov D., Zakharov A., Lagunin A., Poroikov V. (2009) SAR QSAR Environ. Res., 20(7-8), 679-709. CrossRef Scholar google search
Filimonov D., Druzhilovskiy D., Lagunin A., Gloriozova T., Rudik A., Dmitriev A., Pogodin P., Poroikov V. (2018) Biomedical Chemistry: Research and Methods, 1(1), e00004. CrossRef Scholar google search
Lagunin A., Romanova M., Zadorozhny A., Kurilenko N., Shilov B., Pogodin P., Ivanov S., Filimonov D., Poroikov V. (2018) Front. Pharmacol., 10, 1136. CrossRef Scholar google search
Grossman R., Seni G., Elder J., Agarwal N., Liu H. (2010). “Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions”. Synthesis Lectures on Data Mining and Knowledge Discovery, 2, 1-126. CrossRef Scholar google search