Predicting the risk of tumor progression in patients with early stages of adenocarcinoma and squamous cell lung carcinoma based on laboratory parameters
1. Belarusian State Medical University, Minsk, Belarus 2. N.N. Alexandrov Republican Scientific and Practical Center of Oncology and Medical Radiology, Lesnoy, Belarus
Non-small cell carcinoma (NSCLC) prevails in the structure of the incidence of lung cancer. In patients with I stage NSCLC, only 60-70% overcome the 5-year survival barrier, and at II stage it decreases to 35-40%. The reason for such a high mortality rate is almost always a relapse of the disease. The main histological forms of NSCLC — adenocarcinoma (AC) and squamous cell carcinoma (SCLC) — differ in the course, protocols and effectiveness of the treatment. Comparative survival data for AK and PCLC are controversial, and reliable biomarkers for determining the risk of tumor progression are lacking. In thus study we have investigated the possibility of using laboratory parameters characterizing the level of some blood proteins involved in carcinogenesis in patients with early stages of AC and SCLC to determine the risk of disease progression. We retrospectively analyzed the duration of the relapse-free period after surgical treatment for one year in 1250 patients (816 with stages I and II of adenocarcinoma, G1-3 and 434 with early stages of SCLC, G1-3). In 81 patients with AC and 36 — with SCLC (stages I-II, G1-3) the level of CYFRA 21-1 and SCC by electrochemiluminescent method, chemokines CXCL5, CXCL8, TPA, pyruvate kinase M2, HIF-1α and hyaluronic acid by enzyme immunoassay, receptors CXCR1, CXCR2, CD44v6 by flow cytometry were determined. Using the Kaplan-Meier graphical analysis, groups of low (stage I G1-2 + stage II G1) and high (stage I G3 + stage II G2-3) risk of tumor progression were identified. In the case of the one-year survival rate of patients with AC was higher than with SCLC. In patients with AC and a high risk of tumor recurrence, compared with a low one, the level of CYFRA 21-1, the mean intensity of fluorescence (MFI) of the CXCR1 receptor in granulocytes, and the relative content of the CXCR2 receptor in lymphocytes were higher. In the case of rapid progression of SCLC in patients, the relative content of the CXCR2 receptor in lymphocytes, the proportion of monocytes equipped with the CD44v6 receptor, and the SCC level were higher than with slow progression. Regression equations, including combinations of the above parameters (threshold value for AC — 0,512, for SCLC — 0,409, sensitivity — 91,9% and 90,0%, specificity — 90,0% and 87,5%, respectively), allow to predict the probability of tumor recurrence.
Tahanovich A.D., Kauhanka N.N., Prohorova V.I., Murashka D.I., Gotko O.V. (2021) Predicting the risk of tumor progression in patients with early stages of adenocarcinoma and squamous cell lung carcinoma based on laboratory parameters. Biomeditsinskaya Khimiya, 67(6), 507-517.
Tahanovich A.D. et al. Predicting the risk of tumor progression in patients with early stages of adenocarcinoma and squamous cell lung carcinoma based on laboratory parameters // Biomeditsinskaya Khimiya. - 2021. - V. 67. -N 6. - P. 507-517.
Tahanovich A.D. et al., "Predicting the risk of tumor progression in patients with early stages of adenocarcinoma and squamous cell lung carcinoma based on laboratory parameters." Biomeditsinskaya Khimiya 67.6 (2021): 507-517.
Tahanovich, A. D., Kauhanka, N. N., Prohorova, V. I., Murashka, D. I., Gotko, O. V. (2021). Predicting the risk of tumor progression in patients with early stages of adenocarcinoma and squamous cell lung carcinoma based on laboratory parameters. Biomeditsinskaya Khimiya, 67(6), 507-517.
Clark S.B., Alsubait S. (2021) in: StatPearls. Treasure Island (FL): StatPearls Publishing. Retrieved October 18, 2021, from: https://www.ncbi.nlm.nih.gov/books/NBK562307/. Scholar google search
Howlader N., Noone A.M., Krapcho M. (2018) SEER Cancer Statistics Review, 1975-2016: Table 15.14 NonSmall Cell Cancer of the Lung and Bronchus (Invasive). National Cancer Institute. Bethesda, MD. 2018 (http://seer.cancer.gov/csr/2018). Scholar google search
Howlader N., Noone A.M., Krapcho M. (2008) SEER Cancer Statistics Review, 1975-2008, National Cancer Institute. Bethesda, MD. (http://seer.cancer.gov/csr/1975_2008). Scholar google search
Pujol J.L., Molinier O., Ebert W., Daures J.P., Barlesi F., Buccheri G., Paesmans M., Quoix E., Moro-Sibilot D., Szturmowicz M., Bréchot J.M., Muley T., Grenier J. (2004) Br. J. Cancer, 90(11), 2097-2105. CrossRef Scholar google search
Nolen B.M., Langmead C.J., Choi S., Lomakin A., Marrangoni A., Bigbee W.L., Weissfeld J.L., Wilson D.O., Dacic S., Siegfried J.M., Lokshin A.E. (2011-2012) Cancer Biomark., 10(1), 3-12. CrossRef Scholar google search
Colotta F., Allavena P., Sica A., Garlanda C., Mantovani A. (2009) Carcinogenesis, 30(7), 1073-1081. CrossRef Scholar google search
Zhang W., Wang H., Sun M., Deng X., Wu X., Ma Y., Li M., Shuoa S.M., You Q., Miao L. (2020) Cancer Comm. (London, England), 40(2-3), 69-80. CrossRef Scholar google search
Fukui T., Taniguchi T., Kawaguchi K., Fukumoto K., Nakamura S., Sakao Y., Yokoi K. (2015) Gen. Thorac. Cardiovasc. Surg., 63(9), 507-513. CrossRef Scholar google search
Yasukawa M., Sawabata N., Kawaguchi T., Kawai N., Nakai T., Ohbayashi C., Taniguchi S. (2018) In vivo (Athens, Greece), 32(6), 1505-1512. CrossRef Scholar google search
Hsu L.H., Chu N.M., Liu C.C., Tsai S.Y., You D.L., Ko J.S., Lu M.C., Feng A.C. (2009) Lung Cancer, 66(2), 262-267. CrossRef Scholar google search
Ettinger D.S., Wood D.E., Aisner D.L., Akerley W., Bauman J., Chirieac L.R., D'Amico T.A., DeCamp M.M., Dilling T.J., Dobelbower M., Doebele R.C., Govindan R., Gubens M.A., Hennon M., Horn L., Komaki R., Lackner R.P., Lanuti M., Leal T.A., Leisch L.J., Lilenbaum R., Lin J., Loo B.W., Martins R., Otterson G.A., Reckamp K., Riely G.J., Schild S.E., Shapiro T.A., Stevenson J., Swanson S.J., Tauer K., Yang S.C., Gregory K., Hughes M. (2017) J. Natl. Compr. Canc. Netw., 15(4), 504-535. CrossRef Scholar google search
Chansky K., Sculier J.P., Crowley J.J., Giroux D., van Meerbeeck J., Goldstraw P. (2010) Clin. J. Lung Cancer, 13(1), 9-18. Scholar google search
Berardi R., Brunelli A., Tamburrano T., Verdecchia L., Onofri A., Zuccatosta L., Gasparini S., Santinelli A., Scartozzi M., Valeri G., Giovagnoni A., Giuseppetti G.M., Fabris G., Marmorale C., Fianchini A., Cascinu S. (2005) Lung Cancer, 49(3), 371-376. CrossRef Scholar google search
Lopez Guerra J.L., Gomez D.R., Lin S.H., Levy L.B., Zhuang Y., Komaki R., Jaen J., Vaporciyan A.A., Swisher S.G., Cox J.D., Liao Z., Rice D.C. (2013) Ann. Oncol., 24(1), 67-74. CrossRef Scholar google search
Wang B.Y., Huang J.Y., Chen H.C., Lin C.H., Lin S.H., Hung W.H., Cheng Y.F. (2020) J. Cancer Res. Clin. Oncol., 146(1), 43-52. CrossRef Scholar google search
Jiao Z., Cao S., Li J., Hu N., Gong Y., Wang L., Jin S. (2021) Front. Mol. Biosci., 8, 686313. CrossRef Scholar google search
Muley T., Rolny V., He Y., Wehnl B., Escherich A., Warth A., Stolp C., Schneider M.A., Dienemann H., Meister M., Herth F.J., Dayyani F. (2018) Lung Cancer, 120, 46-53. CrossRef Scholar google search
Matsuoka K., Sumitomo S., Nakashima N., Nakajima D., Misaki N. (2007) Eur. J. Cardiothorac. Surg., 32, 435-439. CrossRef Scholar google search
Mizuguchi S., Nishiyama N., Iwata T., Nishida T., Izumi N., Tsukioka T., Inoue K., Uenishi T., Wakasa K., Suehiro S. (2007) Lung Cancer, 58, 369-375. CrossRef Scholar google search
Blankenburg F., Hatz R., Nagel D., Ankerst D., Reinmiedl J., Gruber C., Seidel D., Stieber P. (2008) Tumour Biol., 29(4), 272-277. CrossRef Scholar google search