A significant decrease in the activity of lactate dehydrogenase (LDH, EC 1.1.1.27) in liver cells of rats with alloxan diabetes was found due to a decrease in the expression of the corresponding genes. The decrease in the activity of the enzyme under study in experimental type I diabetes was associated with inactivation of the cytoplasmic isoform of LDH. It was found that the level of ldha and ldhb gene transcripts in the liver of healthy rats was higher than in animals with alloxan diabetes. The ldha gene expression demonstrated almost 9-fold decrease, while a decrease in the ldhb gene expression was less pronounced (just 1.25-fold). Probably, the decrease in the rate of functioning of the enzyme under study is associated with a decrease in the intensity of glucose uptake by cells, which leads to inhibition of glycolysis and intensification of all stages of gluconeogenesis, particularly, reversed glycolysis reactions. Thus, the data obtained by us indicate an important role of LDH in the adaptive response of cellular metabolism in the development of type I diabetes mellitus.
Eprintsev A.T., Bondareva I.R., Selivanova N.V. (2022) Expression levels and activity of rat liver lactate dehydrogenase isoenzymes in alloxan diabetes. Biomeditsinskaya Khimiya, 68(1), 32-38.
Eprintsev A.T. et al. Expression levels and activity of rat liver lactate dehydrogenase isoenzymes in alloxan diabetes // Biomeditsinskaya Khimiya. - 2022. - V. 68. -N 1. - P. 32-38.
Eprintsev A.T. et al., "Expression levels and activity of rat liver lactate dehydrogenase isoenzymes in alloxan diabetes." Biomeditsinskaya Khimiya 68.1 (2022): 32-38.
Eprintsev, A. T., Bondareva, I. R., Selivanova, N. V. (2022). Expression levels and activity of rat liver lactate dehydrogenase isoenzymes in alloxan diabetes. Biomeditsinskaya Khimiya, 68(1), 32-38.
Mayfield J. (1998) Diagnosis and classification of diabetes mellitus: new criteria. Am. Fam. Physician, 58(6), 1355-1362. Scholar google search
Kono N., Kuwajima M., Tarui S. (1981) Alteration of glycolytic intermediary metabolism in erythrocytes during diabetic ketoacidosis and its recovery phase. Diabetes, 30(4), 346-353. CrossRef Scholar google search
Mali A.V., Bhise S.S., Hegde M.V., Katyare S.S. (2016) Altered Erythrocyte Glycolytic Enzyme Activities in Type-II Diabetes. Indian J. Clin. Biochem., 31(3), 321-325. CrossRef Scholar google search
Eprintsev A.T., Selivanova N.V., Moiseenko A.V. (2021) Effect of jerusalem artichoke extract on the functioning of malate dehydrogenase in the liver of rats with alloxan diabetes. Biomeditsinskaya Khimiya, 67(2), 144-149. CrossRef Scholar google search
Al Dajni S. (2012) Vliyanie vodnogo ekstrakta Olivy evropejskoj (Olea europaea) na funkcionirovanie fermentov glioksilatnogo cikla u krys v usloviyah eksperimentalnogo diabeta. Avtoreferat dis. kandidata biologicheskih nauk, Voronezh. gos. un-t, Voronezh. Scholar google search
Avezov K., Reznick A.Z., Aizenbud D. (2014) LDH enzyme activity in human saliva: the effect of exposure to cigarette smoke and its different components. Arch. Oral Biol., 59(2), 142-148. CrossRef Scholar google search
Mali A.V., Bhise S.S., Katyare S.S., Hegde M.V. (2018) Altered kinetics properties of erythrocyte lactate dehydrogenase in type II diabetic patients and its implications for lactic acidosis. Indian J. Clin. Biochem., 33(1), 38-45. CrossRef Scholar google search
Lenzen S. (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 51(2), 216-226. CrossRef Scholar google search
Pollock N.L., Rai M., Simond K.S., Hesketh S.J., Teo A.C.K., Parmar M., Sridhar P., Collins R., Lee S.C., Stroud Z.N., Bakker S.E., Muench S.P., Barton C.H., Hurlbut G., Roper D.I., Smith C.J.I., Knowles T.J., Spickett C.M., East J.M., Postis V., Dafforn T.R. (2019) SMA-PAGE: A new method to examine complexes of membrane proteins using SMALP nano-encapsulation and native gel electrophoresis. Biochim. Biophys. Acta Biomembr., 1861(8), 1437-1445. CrossRef Scholar google search
Harper S., Speicher D.W. (2019) Comparing complex protein samples using two-dimensional polyacrylamide gels. Curr. Protoc. Protein Sci., 96(1), e87. CrossRef Scholar google search
Jelski W., Laniewska-Dunaj M., Orywal K., Kochanowicz J., Rutkowski R., Szmitkowski M. (2014) The activity of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the sera of patients with brain cancer. Neurochem. Res., 39, 2313-2318. CrossRef Scholar google search
Eprintsev A.T., Fedorin D.N., Selivanova N.V., Vu T.L., Mahmud A.S., Popov V.N. (2012) The role of promoter methylation in the regulation of genes encoding succinate dehydrogenase in maize seedlings. Russian Journal of Plant Physiology, 59(3), 299-306. CrossRef Scholar google search
Moss D., Harbison S.A., Saul D.J. (2003) An easily automated, closed-tube forensic DNA extraction procedure using a thermostable proteinase. Int. J. Legal Med., 117, 340-349. CrossRef Scholar google search
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden Th.L. (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13(1), 134. CrossRef Scholar google search
Matveeva S.A., Matveeva I.V. (2016) Laktatdegidrogenaza i glyukoza krovi: osobennosti vzaimosvyazej u muzhchin s ishemicheskoj bolezn'yu serdca i saharnym diabetom 2 tipa. Evrazijskij kardiologicheskij zhurnal, 3, 102-103. Scholar google search
Dmour H.H., Khreisat E.F., Khreisat A.F., Hasan Sh.A., Atoom O., Alkhatib A.J. (2020) Assessment of lactate dehydrogenase levels among diabetic patients treated in the outpatient clinics at King Hussein Medical Center, Royal Medical Services, Jordan. Med. Arch., 74(5), 384-386. CrossRef Scholar google search
Feng Y., Xiong Y., Qiao T., Li X., Jia L., Han Y. (2018) Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med., 7(12), 6124-6136. CrossRef Scholar google search
Elsner M., Tiedge M., Guldbakke B., Munday R., Lenzen S. (2002) Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan. Diabetologia, 45(11), 1542-1549. CrossRef Scholar google search
Hertz L., Dienel G.A. (2002) Energy metabolism in the brain. Int. Rev. Neurobiol., 51, 1-102. CrossRef Scholar google search
Hashimoto T., Brooks G.A. (2008) Mitochondrial lactate oxidation complex and an adaptive role for lactate production. Med. Sci. Sports Exerc., 40(3), 486-494. CrossRef Scholar google search
Chandran S., Yap F., Hussain K. (2014) Molecular mechanisms of protein induced hyperinsulinaemic hypoglycaemia. World J. Diabetes, 5(5), 666-677. CrossRef Scholar google search
Ždralević M., Brand A., di Ianni L., Dettmer K., Reinders J., Singer K., Peter K., Schnell A., Bruss C., Decking S.M., Koehl G., Felipe-Abrio B., Durivault J., Bayer P., Evangelista M., O'Brien T., Oefner P.J., Renner K., Pouysségur J., Kreutz M. (2018) Double genetic disruption of lactate dehydrogenases A and B is required to ablate the “Warburg effect” restricting tumor growth to oxidative metabolism. J. Biol. Chem., 293(41), 15947-15961. CrossRef Scholar google search