1. Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia 2. Institute of Biomedical Chemistry, Moscow, Russia 3. Institute of Bioorganic Chemistry, Minsk, Belarus
The role of partner proteins in the formation of functional complexes in cytochrome P450 systems was investigated by means of optical biosensor technique. Kinetic constants and equilibrium dissociation constants of complexes of cytochrome CYP11A1 (P450scc) with wild-type adrenodoxin (Adx WT) and mutant forms of adrenodoxin R106D and D109R were determined using an optical biosensor. Wild-type adrenodoxin (Kd = (1.23±0.09)⋅10⁻⁶ M) and mutant D109R (Kd = (2.37±0.09)⋅10⁻⁸ M) formed complexes with cytochrome P450scc. For the R106D mutant, no complex formation was detected. To investigate the possibility of the participation of adrenodoxins and their mutant variants in the process of electron transfer as electron donors in mitochondrial cytochrome P450 systems, the electrochemical properties of these iron-sulfur proteins Adx WT and mutant forms of adrenodoxins were studied. Adx WT, mutant forms R106D and D109R have redox potentials E1/2 significantly more negative than cytochromes P450 (-579±10 mV, -590±15 mV, and -528±10 mV, respectively). These results suggest that Adx WT and mutant forms may be electron donors in the cytochrome P450 systems.
Shumyantseva V.V., Bulko T.V., Gnedenko O.V., Yablokov E.O., Usanov S.A., Ivanov A.S. (2022) Adrenodoxins and their role in the cytochrome P450 systems. Biomeditsinskaya Khimiya, 68(1), 47-54.
Shumyantseva V.V. et al. Adrenodoxins and their role in the cytochrome P450 systems // Biomeditsinskaya Khimiya. - 2022. - V. 68. -N 1. - P. 47-54.
Shumyantseva V.V. et al., "Adrenodoxins and their role in the cytochrome P450 systems." Biomeditsinskaya Khimiya 68.1 (2022): 47-54.
Shumyantseva, V. V., Bulko, T. V., Gnedenko, O. V., Yablokov, E. O., Usanov, S. A., Ivanov, A. S. (2022). Adrenodoxins and their role in the cytochrome P450 systems. Biomeditsinskaya Khimiya, 68(1), 47-54.
Li Z., Jiang Y., Guengerich F.P., Ma L., Li S., Zhang W. (2020) Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J. Biol. Chem., 295(3), 833-849. CrossRef Scholar google search
Hrycay E.G., Bandiera S.M. (2015) Monooxygenase, peroxygenase and peroxidase properties and reaction mechanism of cytochrome P450 enzymes. Adv. Exp. Med. Biol., 851, 1-61. CrossRef Scholar google search
Kuzikov A.V., Masamrekh R.A., Archakov A.I., Shumyantseva V.V. (2018) Methods for determination of functional activity of cytochrome P450 isoenzymes. Biomeditsinskaya Khimiya, 64(2), 149-168. CrossRef Scholar google search
Guengerich F.P. (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol., 14, 611-650. CrossRef Scholar google search
Bernhardt R. (2006) Cytochromes P450 as versatile biocatalysts. J. Biotechnol., 124, 128-145. CrossRef Scholar google search
Klingenberg M. (1958) Pigments of rat liver microsomes. Arch. Biochem. Biophys., 75, 376-386. CrossRef Scholar google search
Hannemann F., Bichet A., Ewen K.M., Bernhardt R. (2007) Cytochrome P450 systems — biological variations of electron transport chains. Biochim. Biophys. Acta, 1770(3), 330-344. CrossRef Scholar google search
Li S., Du L., Bernhardt R. (2020) Redox partners: function modulators of bacterial Р450 enzymes. Trends Microbiol., 28(6), 445-454. CrossRef Scholar google search
Akhtar M., Wright J.N., Lee-Robichau P. (2011) A review of mechanistic studies on aromatase (CYP19) and 17α-hydroxylase-17,20-lyase (CYP17). J. Steroid Biochem. Mol. Biol., 125, 2-12. CrossRef Scholar google search
Schenkman J.B., Jansson I. (2003) The many roles of cytochrome b5. Pharmacol. Ther., 97(2), 139-152. CrossRef Scholar google search
Im S.C., Waskell L. (2011) The interaction of microsomal cytochrome P450 2B4 with its redox partners, cytochrome P450 reductase and cytochrome b(5). Arch. Biochem. Biophys., 507, 144-153. CrossRef Scholar google search
Ortiz de Montellano P.R. (ed.) (2015) Cytochrome P450. Structure, mechanism, and biochemistry. University of California, San Francisco, California, USA, 2099 p. Scholar google search
Ewen K.M., Kleser M., Bernhardt R. (2011) Adrenodoxin: the archetype of vertebrate-type [2Fe-2S] cluster ferredoxins. Biochim. Biophys. Acta, 1814, 111-125. CrossRef Scholar google search
Gomez L., Kovac J.R., Lamb D.J. (2015) CYP17A1 inhibitors in castration-resistant prostate cancer. Steroids, 95, 80-87. CrossRef Scholar google search
Hargrove T.Y., Friggeri L., Wawrzak Z., Sivakumaran S., Yazlovitskaya E.M., Hiebert S.W., Guengeric F.P., Waterman M.R., Lepesheva G.I. (2016) Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design. J. Lipid Res., 57, 1552-1563. CrossRef Scholar google search
Liu J., Chakraborty S., Hosseinzadeh P., Yu Y., Tian S., Petrik I., Bhagi A., Lu Y. (2014) Metalloproteins Containing Cytochrome, Iron-Sulfur, or Copper Redox Centers. Chem. Rev., 114, 4366-4469. CrossRef Scholar google search
Brixius-Anderko S., Scott E. (2021) Structural and functional insights into aldosterone synthase interaction with its redox partner protein adrenodoxin. J. Biol. Chem., 296, 100794. CrossRef Scholar google search
Waskell L., Kim J.-J.P. (2015) Electron Transfer Partners of Cytochrome P450. In: Cytochrome P450. Structure, Mechanism, and Biochemistry (Ortiz de Montellano P.R., ed.). Springer Cham Heidelberg, New York Dordrecht London, pp. 33-68. CrossRef Scholar google search
Suzuki K., Kimura T. (1965) An iron protein as a component of steroid 11-betahydroxylase complex. Biochem. Biophys. Res. Commun., 19, 340-345. CrossRef Scholar google search
Omura T., Sanders E., Estabrook R.W., Cooper D.Y., Rosenthal O. (1966) Isolation from adrenal cortex of a nonheme iron protein and a flavoprotein functional as a reduced triphosphopyridine nucleotide-cytochrome P-450 reductase. Arch. Biochem. Biophys., 117, 660-673. CrossRef Scholar google search
Kimura T., Suzuki K. (1967) Components of the electron transport system in adrenal steroid hydroxylase. Isolation and properties of non-heme iron protein (adrenodoxin). J. Biol. Chem., 242, 485-491. CrossRef Scholar google search
Mittal S., Zhu Y.Z., Vickery L.E. (1988) Molecular cloning and sequence analysis of human placental ferredoxin. Arch. Biochem. Biophys., 264, 383-391. CrossRef Scholar google search
Chashchin V.L., Lapko V.N., Adamovich T.B., Kirillova N.M., Lapko A.G. (1986) Primary structure of hepatoredoxin from bovine liver mitochondria. Bioorganicheskaya Khimiya, 12, 1286-1289. Scholar google search
Matsuo Y., Tomita S., Tsuneoka Y., Furukawa A., Ichikawa Y. (1992) Molecular cloning and nucleotide sequences of bovine hepato-ferredoxin cDNA; identical primary structures of hepato- and adreno-ferredoxins. Int. J. Biochem., 24, 289-295. CrossRef Scholar google search
Pedersen J.I., Ghazarian J.G., Orme-Johnson N.R., de Luca H.F. (1976) Isolation of chick renal mitochondrial ferredoxin active in the 25-hydroxyvitamin D3-1alpha-hydroxylase system. J. Biol. Chem., 251, 3933-3941. CrossRef Scholar google search
Ohashi M., Omura T. (1978) Presence of the NADPHcytochrome P-450 reductase system in liver and kidney mitochondria. J. Biochem., 83, 249-260. CrossRef Scholar google search
Chang C.Y., Wu D.A., Mohandas T.K., Chung B.C. (1990) Structure, sequence, chromosomal location, and evolution of the human ferredoxin gene family. DNA Cell Biol., 9, 205-212. CrossRef Scholar google search
Usanov S.A., Chashchin V.L., Akhrem A.A. (1990) Cytochrome P-450 dependent pathways of the biosynthesis of steroid hormones. In: Molecular mechanisms of adrenal steroidogenesis and aspects of regulation and application (Ruckpaul K., Rein H., eds.) Akademie Verlag, Berlin, Germany, pp. 1-57. CrossRef Scholar google search
Strushkevich N., MacKenzie F., Cherkesova T., Grabovec I., Usanov S., Park H.-W. (2011) Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. Proc. Natl. Acad. Sci. USA, 108, 10139-10143. CrossRef Scholar google search
Ivanov Y.D., Usanov S.A., Archakov A.I. (1999) Optical biosensor studies on the productive complex formation between the components of cytochrome P450scc dependent monooxygenase system. Biochem. Mol. Biol. Int., 47, 327-336. CrossRef Scholar google search
Ivanov Y.D., Kanaeva I.P., Karuzina I.I., Usanov S.A., Hui Bon Hoa G., Sligar S.G., Archakov A.I. (2001) Revelation of ternary complexes between redox partners in cytochrome P450-containing monooxygenase systems by the optical biosensor method. J. Inorg. Biochem., 87(4), 175-184. CrossRef Scholar google search
Schiffler B., Zöllner A., Bernhardt R. (2004) Stripping down the mitochondrial cholesterol hydroxylase system, a kinetics study. J. Biol. Chem., 279, 34269-34276. CrossRef Scholar google search
Yablokov E., Sushko T., Ershov P., Florinskaya A., Gnedenko O., Shkel T., Grabovec I., Strushkevich N., Kaluzhskiy L., Usanov S., Gilep A., Ivanov A. (2019) A large-scale comparative analysis of affinity, thermodynamics and functional characteristics of twelve cytochrome P450 isoforms and their redox partners. Biochimie, 162, 156-166. CrossRef Scholar google search
Yablokov E.O., Sushko T.A., Kaluzhskiy L.A., Kavaleuski A.A., Mezentsev Y.V., Ershov P.V., Gilep A.A., Ivanov A.S., Strushkevich N.V. (2021) Substrate-induced modulation of protein-protein interactions within human mitochondrial cytochrome P450-dependent system. J. Steroid Biochem. Mol. Biol., 208, 105793. CrossRef Scholar google search
Sagara Y., Hara T., Ariyasu Y., Ando F., Tokunaga N., Horiuchi T. (1992) Direct expression in Escherichia coli and characterization of bovine adrenodoxins with modified amino-terminal regions. FEBS Lett., 300, 208-212. CrossRef Scholar google search
Huang J.J., Kimura T. (1973) Studies on adrenal steroid hydroxylases. Oxidation reduction properties of adrenal iron-sulfur protein (adrenodoxin). Biochemistry, 12, 406-409. CrossRef Scholar google search
Han X., Cheng W., Zhang Z., Dong S., Wang E. (2002) Direct electron transfer between hemoglobin and a glassy carbon electrode facilitated by lipid-protected gold nanoparticles. Biochem. Biophys. Acta, 1556, 273-277. CrossRef Scholar google search
Kuzikov A.V., Masamrekh R.A., Khatri Y., Zavialova M.G., Bernhardt R., Archakov A.I., Shumyantseva V.V. (2016) Scrutiny of electrochemically-driven electrocatalysis of C-19 steroid 1α-hydroxylase (CYP260A1) from Sorangium cellulosum So ce56. Anal. Biochem., 513, 28-35. CrossRef Scholar google search
Jin W., Wollenberger U., Bernhardt R., Stöcklein W.F.M., Scheller F.W. (1998) Direct electron transfer of adrenodoxin — a [2Fe-2S] protein — and its mutants at modified gold electrode. Bioelectrochem. Bioenerg., 47, 75-79. CrossRef Scholar google search
Johnson D., Norman S., Tuckey R.C., Martin L.L. (2003) Electrochemical behaviour of human adrenodoxin on a pyrolytic graphite electrode. Bioelectrochemistry, 59, 41-47. CrossRef Scholar google search
Usanov S.A., Graham S.E., Lepesheva G.I., Azeva T.N., Strushkevich N.V., Gilep A.A., Estabrook R.W., Peterson J.A. (2002) Probing the interaction of bovine cytochrome P450scc (CYP11A1) with adrenodoxin: evaluating site-directed mutations by molecular modeling. Biochemistry, 41, 8310-8320. CrossRef Scholar google search
Azeva T.N., Gilep A.A., Lepesheva G.I., Strushkevich N.V., Usanov S.A. (2001) Site-directed mutagenesis of cytochrome P450scc. II. Effect of replacement of the Arg425 and Arg426 residues on the structural and functional properties of the cytochrome P450scc. Biochemistry (Moscow), 66, 564-575. CrossRef Scholar google search
Lepesheva G.I., Azeva T.N., Strushkevich N.V., Gilep A.A., Usanov S.A. (2000) Site-directed mutagenesis of cytochrome P450scc (CYP11A1). Effect of lysine residue substitution on its structural and functional properties. Biochemistry (Moscow), 65, 1409-1418. CrossRef Scholar google search
Strushkevich N.V., Harnastai I.N., Usanov S.A. (2010) Mechanism of steroidogenic electron transport: role of conserved Glu429 in destabilization of CYP11A1-adrenodoxin complex. Biochemistry (Moscow), 75, 570-578. CrossRef Scholar google search
Murray R.W. (1987) Chemically modified electrodes. In: Electroanalytical Chemistry (Bard A.J., ed.). Marcel Dekker, New York, 13, pp. 191. Scholar google search
Compton R.G., Banks C.E. (2011) Understanding voltammetry (2nd edition) Imperial College Press, London, UK, 444 p. Scholar google search
Rusling F., Wang B., Yun S. (2008) Electrochemistry of redox enzymes. In: Bioelectrochemistry: Fundametals, Experimental Techniques and Applications (Bartlett P.N., ed.), John Wiley and Sons, USA, Ch. 2, p. 39. CrossRef Scholar google search