The analysis of cytochrome P450 transcripts was carried out by the nanopore sequencing in liver tissue samples of three donors and HepG2 line cells. It has been demonstrated that direct mRNA sequencing with a MinION nanopore sequencer (Oxford Nanopore Technologies) allows one to obtained quantitative profiles for transcripts (and their splice variants) of cytochrome P450 superfamily genes encoding isoforms involved in metabolism of the large (~80%) part of drugs. The splice variant profiles substantially differ for donors. The cytochrome P450 gene expression at the transcript level is significantly weaker in cells of the HepG2 line compared with that in the normal liver tissue. This limits the capability of the direct mRNA nanopore sequencing for studying alternative splicing of cytochrome P450 transcripts in HepG2 cells. Both quantitative and qualitative profiles of the cytochrome P450 gene expression at the transcript level are notably differ in human liver tissue and HepG2 cells.
Download PDF:
Keywords: splice variants, nanopore sequencing, cytochromes P450, human liver tissue, HepG2 cell line
Supplementary materials:
Citation:
Deynichenko K.A., Ptitsyn K.G., Radko S.P., Kurbatov L.K., Vakhrushev I.V., Buromski I.V., Markin S.S., Archakov A.I., Lisitsa A.V., Ponomarenko E.A. (2022) Splice variants of mRNA of cytochrome P450 genes: analysis by the nanopore sequencing method in human liver tissue and HepG2 cell line. Biomeditsinskaya Khimiya, 68(2), 117-125.
Deynichenko K.A. et al. Splice variants of mRNA of cytochrome P450 genes: analysis by the nanopore sequencing method in human liver tissue and HepG2 cell line // Biomeditsinskaya Khimiya. - 2022. - V. 68. -N 2. - P. 117-125.
Deynichenko K.A. et al., "Splice variants of mRNA of cytochrome P450 genes: analysis by the nanopore sequencing method in human liver tissue and HepG2 cell line." Biomeditsinskaya Khimiya 68.2 (2022): 117-125.
Deynichenko, K. A., Ptitsyn, K. G., Radko, S. P., Kurbatov, L. K., Vakhrushev, I. V., Buromski, I. V., Markin, S. S., Archakov, A. I., Lisitsa, A. V., Ponomarenko, E. A. (2022). Splice variants of mRNA of cytochrome P450 genes: analysis by the nanopore sequencing method in human liver tissue and HepG2 cell line. Biomeditsinskaya Khimiya, 68(2), 117-125.
Nilsen T.W., Graveley B.R. (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature, 463(7280), 457-463. CrossRef Scholar google search
Jiang W., Chen L. (2021) Alternative splicing: Human disease and quantitative analysis from high-throughput sequencing. Comput. Struct. Biotechnol. J., 19, 183-195. CrossRef Scholar google search
de Klerk E., Hoen P.A. (2015) Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet., 31(3), 128-139. CrossRef Scholar google search
Radko S.P., Kurbatov L.K., Ptitsyn K.G., Kiseleva Y.Y., Ponomarenko E.A., Lisitsa A.V., Archakov A.I. (2018) Prospects for the use of third generation sequencers for quantitative profiling of transcriptome. Biomed. Chem.: Res. Meth., 1(4), e00086. CrossRef Scholar google search
Pyatnitskiy M.A., Arzumanian V.A., Radko S.P., Ptitsyn K.G., Vakhrushev I.V., Poverennaya E.V., Ponomarenko E.A. (2021) Oxford nanopore MinION Direct RNA-Seq for systems biology. Biology (Basel), 10(11), 1131. CrossRef Scholar google search
de Paoli-Iseppi R., Gleeson J., Clark M.B. (2021) Isoform age — splice isoform profiling using long-read technologies. Front. Mol. Biosci., 8, 711-733. CrossRef Scholar google search
Danielson P.B. (2002) The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab., 3(6), 561-597. CrossRef Scholar google search
Zhao M., Ma J., Li M., Zhang Y., Jiang B., Zhao X., Huai C., Shen L., Zhang N., He L., Qin S. (2021) Cytochrome P450 enzymes and drug metabolism in humans. Int. J. Mol. Sci., 22(23), 12808. CrossRef Scholar google search
Sim S.C., Ingelman-Sundberg M. (2013) Update on allele nomenclature for human cytochromes P450 and the human cytochrome P450 allele (CYP-allele) nomenclature database. Methods Mol. Biol., 987, 251-259. CrossRef Scholar google search
Annalora A.J., Marcus C.B., Iversen P.L. (2017) Alternative splicing in the cytochrome P450 superfamily expands protein diversity to augment gene function and redirect human drug metabolism. Drug Metab. Dispos., 45(4), 375-389. CrossRef Scholar google search
Almazroo O.A., Miah M.K., Venkataramanan R. (2017) Drug metabolism in the liver. Clin. Liver Dis., 21(1), 1-20. CrossRef Scholar google search
Gupta R., Schrooders Y., Hauser D., van Herwijnen M., Albrecht W., Ter Braak B., Brecklinghaus T., Castell J.V., Elenschneider L., Escher S., Guye P., Hengstler J.G., Ghallab A., Hansen T., Leist M., Maclennan R., Moritz W., Tolosa L., Tricot T., Verfaillie C., Walker P., van de Water B., Kleinjans J., Caiment F. (2021) Comparing in vitro human liver models to in vivo human liver using RNA-Seq. Arch. Toxicol., 95(2), 573-589. CrossRef Scholar google search
Broekman M.M., Roelofs H.M., Wong D.R., Kerstholt M., Leijten A., Hoentjen F., Peters W.H., Wanten G.J., de Jong D.J. (2015) Allopurinol and 5-aminosalicylic acid influence thiopurine-induced hepatotoxicity in vitro. Cell. Biol. Toxicol., 31(3), 161-171. CrossRef Scholar google search
Waldherr M., Misik M., Ferk F., Tomc J., Zegura B., Filipic M., Mikulits W., Mai S., Haas O., Huber W.W., Haslinger E., Knasmuller S. (2018) Arch. Toxicol., 92(2), 921-934. CrossRef Scholar google search
Romualdo G.R., Leroy K., Costa C.J.S., Prata G.B., Vanderborght B., da Silva T.C., Barbisan L.F., Andraus W., Devisscher L., Câmara N.O.S., Vinken M., Cogliati B. (2021) Use of HuH6 and other human-derived hepatoma lines for the detection of genotoxins: a new hope for laboratory animals? Cancers (Basel), 13(21), 5583. CrossRef Scholar google search
Arzumanian V.A., Kiseleva O.I., Poverennaya E.V. (2021) The curious case of the HepG2 cell line: 40 years of expertise. Int. J. Mol. Sci., 22(23), 13135. CrossRef Scholar google search
Choi S., Sainz B. Jr., Corcoran P., Uprichard S., Jeong H. (2009) Characterization of increased drug metabolism activity in dimethyl sulfoxide (DMSO)-treated Huh7 hepatoma cells. Xenobiotica, 39(3), 205-217. CrossRef Scholar google search
Kanebratt K.P., Andersson T.B. (2008) Evaluation of HepaRG cells as an in vitro model for human drug metabolism studies. Drug Metab Dispos., 36(7), 1444-1452. CrossRef Scholar google search
Gripon P., Rumin S., Urban S., Le Seyec J., Glaise D., Cannie I., Guyomard C., Lucas J., Trepo C., Guguen-Guillouzo C. (2002) Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. USA, 99(24), 15655-15660. CrossRef Scholar google search
Ren Y., Wang Y., Hao S., Yang Y., Xiong W., Qiu L., Tao J., Tang A. (2020) BMP2 secretion from hepatocellular carcinoma cell HepG2 enhances angiogenesis and tumor growth in endothelial cells via activation of the MAPK/p38 signaling pathway. J. Cancer., 11(23), 6939-6949. CrossRef Scholar google search
Chinnadurai R., Porter A.P., Patel M., Lipat A.J., Forsberg M.H., Rajan D., Hematti P., Capitini C.M., Bruker C. (2021) Hepatocellular carcinoma cells are protected from immunolysis by mesenchymal stromal cells through indoleamine 2,3 dioxygenase. Front. Cell. Dev. Biol., 9, 715905. CrossRef Scholar google search
Wick R.R., Judd L.M., Holt K.E. (2019) Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol., 20(1), 129. CrossRef Scholar google search
Shapovalova V.V., Radko S.P., Ptitsyn K.G., Krasnov G.S., Nakhod K.V., Konash O.S, Vinogradina M.A., Ponomarenko E.A., Druzhilovskiy D.S., Lisitsa A.V. (2020) Processing oxford nanopore long reads using amazon web services. Biomed. Chem.: Res. Meth., 3(4), e00131. CrossRef Scholar google search
Li H. (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 3094-3100. CrossRef Scholar google search
Patro R., Duggal G., Love M.I., Irizarry R.A., Kingsford C. (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods, 14(4), 417-419. CrossRef Scholar google search
Anzenbacher P., Anzenbacherova E. (2001) Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life Sci., 58(5-6), 737-747. CrossRef Scholar google search
Achour B., Barber J., Rostami-Hodjegan A. (2014) Expression of hepatic drug-metabolizing cytochrome P450 enzymes and their inter-correlations: a meta-analysis. Drug Metab. Dispos., 42(8), 1349-1356. CrossRef Scholar google search
Petushkova N.A., Kanaeva I.P., Lisitsa A.V., Sheremetyeva G.F., Zgoda V.G., Samenkova N.F., Karuzina I.I., Archakov A.I. (2006) Characterization of human liver cytochromes P450 by combining the biochemical and proteomic approaches. Toxicol. In Vitro, 20(6), 966-974. CrossRef Scholar google search
Jacob A.G., Smith C.W.J. (2017) Intron retention as a component of regulated gene expression programs. Hum. Genet., 136(9), 1043-1057. CrossRef Scholar google search