G-quadruplexes (G4), non-canonical secondary DNA structures, are intensively investigated for a long time. In eukaryotic organisms they play an important role in the regulation of gene expression and DNA repair. G4 have also been found in the genomes of numerous bacteria and archaea, but their functional role has not yet been fully explored. Nevertheless, their participation in the formation of antigenic variability, pathogenicity, antibiotic resistance and survival in extreme conditions has been established. Currently, many tools have been developed to detect potential G4 sequences and confirm their formation ability. Since the controlled formation and resolution of the quadruplex are significant means for the regulation of genes critical for survival, a promising direction is the search for ligands — compounds that can have a stabilizing effect on the quadruplex structure and thereby alter gene expression. Currently, a number of ligands are already known, their use stops the growth of pathogenic microorganisms. G4 ligands are of interest as potential antibiotics, which are extremely relevant due to the wide spread of drug resistant pathogens.
Download PDF:
Keywords: quadruplexes, DNA secondary structure, antigenic variability, ligands, transcription regulation
Citation:
Shitikov E.A., Bespiatykh D.A., Bodoev I.N., Zaychikova M.V. (2022) G-quadruplex structures in bacteria: functional properties and prospects for use as biotargets. Biomeditsinskaya Khimiya, 68(2), 93-103.
Shitikov E.A. et al. G-quadruplex structures in bacteria: functional properties and prospects for use as biotargets // Biomeditsinskaya Khimiya. - 2022. - V. 68. -N 2. - P. 93-103.
Shitikov E.A. et al., "G-quadruplex structures in bacteria: functional properties and prospects for use as biotargets." Biomeditsinskaya Khimiya 68.2 (2022): 93-103.
Shitikov, E. A., Bespiatykh, D. A., Bodoev, I. N., Zaychikova, M. V. (2022). G-quadruplex structures in bacteria: functional properties and prospects for use as biotargets. Biomeditsinskaya Khimiya, 68(2), 93-103.
Watson J.D., Crick F.H. (1953) The structure of DNA. Cold Spring Harbor Symposia on Quantitative Biology, 18, 123-131. CrossRef Scholar google search
Kaushik M., Kaushik S., Roy K., Singh A., Mahendru S., Kumar M., Chaudhary S., Ahmed S., Kukreti S. (2016) A bouquet of DNA structures: emerging diversity. Biochem. Biophys. Rep., 5, 388-395. CrossRef Scholar google search
Gellert M., Lipsett M.N., Davies D.R. (1962) Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA, 48(12), 2013-2018. CrossRef Scholar google search
Lipps H.J., Rhodes D. (2009) G-quadruplex structures: in vivo evidence and function. Trends Cell Biol., 19(8), 414-422. CrossRef Scholar google search
Harkness R.W., Mittermaier A.K. (2017) G-quadruplex dynamics. Biochim. Biophys. Acta – Proteins and Proteomics, 1865(11 Pt B), 1544-1554. CrossRef Scholar google search
Qin Y., Hurley L.H. (2008) Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie, 90(8), 1149-1171. CrossRef Scholar google search
Yang D., Okamoto K. (2010) Structural insights into G-quadruplexes: towards new anticancer drugs. Future Medicinal Chemistry, 2(4), 619-646. CrossRef Scholar google search
Phan A.T., Kuryavyi V., Patel D.J. (2006) DNA architecture: from G to Z. Curr. Opin. Struct. Biol., 16(3), 288-298. CrossRef Scholar google search
Maizels N. (2006) Dynamic roles for G4 DNA in the biology of eukaryotic cells. Nat. Struct. Mol. Biol., 13(12), 1055-1059. CrossRef Scholar google search
Morris M.J., Negishi Y., Pazsint C., Schonhoft J.D., Basu S. (2010) An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES. J. Am. Chem. Soc., 132(50), 17831-17839. CrossRef Scholar google search
Rouleau S., Glouzon J.P.S., Brumwell A., Bisaillon M., Perreault J.P. (2017) 3' UTR G-quadruplexes regulate miRNA binding. RNA, 23(8), 1172-1179. CrossRef Scholar google search
Subramanian M., Rage F., Tabet R., Flatter E., Mandel J.L., Moine H. (2011) G-quadruplex RNA structure as a signal for neurite mRNA targeting. EMBO Rep., 12(7), 697-704. CrossRef Scholar google search
Dexheimer T.S., Sun D., Hurley L.H. (2006) Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter. J. Am. Chem. Soc., 128(16), 5404-5415. CrossRef Scholar google search
Siddiqui-Jain A., Grand C.L., Bearss D.J., Hurley L.H. (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA, 99(18), 11593-11598. CrossRef Scholar google search
Fernando H., Reszka A.P., Huppert J., Ladame S., Rankin S., Venkitaraman A.R., Neidle S., Balasubramanian S. (2006) A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene. Biochemistry, 45(25), 7854-7860. CrossRef Scholar google search
Palumbo S.L., Memmott R.M., Uribe D.J., Krotova-Khan Y., Hurley L.H., Ebbinghaus S.W. (2008) A novel G-quadruplexforming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity. Nucleic Acids Res., 36(6), 1755-1769. CrossRef Scholar google search
Sun D., Guo K., Rusche J.J., Hurley L.H. (2005) Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplexinteractive agents. Nucleic Acids Res., 33(18), 6070-6080. CrossRef Scholar google search
Cogoi S., Paramasivam M., Filichev V., Géci I., Pedersen E.B., Xodo L.E. (2009) Identification of a new G-quadruplex motif in the KRAS promoter and design of pyrene-modified G4-decoys with antiproliferative activity in pancreatic cancer cells. J. Med. Chem., 52(2), 564-568. CrossRef Scholar google search
Agarwal T., Roy S., Kumar S., Chakraborty T.K., Maiti S. (2014) In the sense of transcription regulation by G-quadruplexes: asymmetric effects in sense and antisense strands. Biochemistry, 53(23), 3711-3718. CrossRef Scholar google search
Rhodes D., Lipps H.J. (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res., 43(18), 8627-8637. CrossRef Scholar google search
Rawal P., Kummarasetti V.B.R., Ravindran J., Kumar N., Halder K., Sharma R., Mukerji M., Das S.K., Chowdhury S. (2006) Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res., 16(5), 644-655. CrossRef Scholar google search
Ravichandran S., Kim Y.E., Bansal V., Ghosh A., Hur J., Subramani V.K., Pradhan S., Lee M.K., Kim K.K., Ahn J.H. (2018) Genome-wide analysis of regulatory G-quadruplexes affecting gene expression in human cytomegalovirus. PLoS Pathogens, 14(9). CrossRef Scholar google search
Mishra S., Kota S., Chaudhary R., Misra H.S. (2021) Guanine quadruplexes and their roles in molecular processes. Crit. Rev. Biochem. Mol. Biol., 56(5), 482-499. CrossRef Scholar google search
Saranathan N., Vivekanandan P. (2019) G-Quadruplexes: more than just a kink in microbial genomes. Trends Microbiol., 27(2), 148. CrossRef Scholar google search
Beaume N., Pathak R., Yadav V.K., Kota S., Misra H.S., Gautam H.K., Chowdhury S. (2013) Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: radioresistance of D. radiodurans involves G4 DNA-mediated regulation. Nucleic Acids Res., 41(1), 76-89. CrossRef Scholar google search
Cahoon L.A., Seifert H.S. (2013) Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae. PLoS Pathogens, 9(1), e1003074. CrossRef Scholar google search
Santos T., Salgado G.F., Cabrita E.J., Cruz C. (2021) G-quadruplexes and their ligands: biophysical methods to unravel G-quadruplex/ligand interactions. Pharmaceuticals (Basel, Switzerland), 14(8), 769. CrossRef Scholar google search
Balasubramanian S., Neidle S. (2009) G-quadruplex nucleic acids as therapeutic targets. Curr. Opin. Chem. Biol., 13(3), 345-353. CrossRef Scholar google search
Ruggiero E., Richter S.N. (2018) G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res., 46(7), 3270-3283. CrossRef Scholar google search
Chen B.J., Wu Y.L., Tanaka Y., Zhang W. (2014) Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics. Int. J. Biol. Sci., 10(10), 1084-1096. CrossRef Scholar google search
Li F., Mulyana Y., Feterl M., Warner J.M., Collins J.G., Keene F.R. (2011) The antimicrobial activity of inert oligonuclear polypyridylruthenium(II) complexes against pathogenic bacteria, including MRSA. Dalton Transactions, 40(18), 5032-5038. CrossRef Scholar google search
Selvam S., Koirala D., Yu Z., Mao H. (2014) Quantification of topological coupling between DNA superhelicity and G-quadruplex formation. J. Am. Chem. Soc., 136(40), 13967-13970. CrossRef Scholar google search
Huppert J.L., Balasubramanian S. (2005) Prevalence of quadruplexes in the human genome. Nucleic Acids Res., 33(9), 2908-2916. CrossRef Scholar google search
Scaria V., Hariharan M., Arora A., Maiti S. (2006) Quadfinder: server for identification and analysis of quadruplex-forming motifs in nucleotide sequences. Nucleic Acids Res., 34(suppl_2), W683-W685. CrossRef Scholar google search
Kikin O., d'Antonio L., Bagga P.S. (2006) QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res., 34(suppl_2), W676-W682. CrossRef Scholar google search
Dhapola P., Chowdhury S. (2016) QuadBase2: web server for multiplexed guanine quadruplex mining and visualization. Nucleic Acids Res., 44(W1), W277-W283. CrossRef Scholar google search
Varizhuk A., Ischenko D., Tsvetkov V., Novikov R., Kulemin N., Kaluzhny D., Vlasenok M., Naumov V., Smirnov I., Pozmogova G. (2017) The expanding repertoire of G4 DNA structures. Biochimie, 135, 54-62. CrossRef Scholar google search
Hon J., Martínek T., Zendulka J., Lexa M. (2017) pqsfinder: an exhaustive and imperfection-tolerant search tool for potential quadruplex-forming sequences in R. Bioinformatics, 33(21), 3373-3379. CrossRef Scholar google search
Eddy J., Maizels N. (2006) Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res., 34(14), 3887-3896. CrossRef Scholar google search
Bedrat A., Lacroix L., Mergny J.L. (2016) Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res., 44(4), 1746-1759. CrossRef Scholar google search
Beaudoin J.D., Jodoin R., Perreault J.P. (2014) New scoring system to identify RNA G-quadruplex folding. Nucleic Acids Res., 42(2), 1209-1223. CrossRef Scholar google search
Belmonte-Reche E., Morales J.C. (2020) G4-iM Grinder: when size and frequency matter. G-Quadruplex, i-Motif and higher order structure search and analysis tool. NAR Genomics and Bioinformatics, 2(1), lqz005. CrossRef Scholar google search
Cebrián R., Belmonte-Reche E., Pirota V., de Jong A., Morales J.C., Freccero M., Doria F., Kuipers O.P. (2021) G-quadruplex DNA as a target in pathogenic bacteria: efficacy of an extended naphthalene diimide ligand and its mode of action. J. Med. Chem., 65(6), 4752-4766. CrossRef Scholar google search
Bartas M., Cutová M., Brázda V., Kaura P., Šťastný J., Kolomazník J., Coufal J., Goswami P., Červeň J., Pečinka P. (2019) The presence and localization of G-quadruplex forming sequences in the domain of bacteria. Molecules, 24(9), 1711. CrossRef Scholar google search
Wu F., Niu K., Cui Y., Li C., Lyu M., Ren Y., Chen Y., Deng H., Huang L., Zheng S., Liu L., Wang J., Song Q., Xiang H., Feng Q. (2021) Genome-wide analysis of DNA G-quadruplex motifs across 37 species provides insights into G4 evolution. Communications Biology, 4(1), 1-11. CrossRef Scholar google search
Giacani L., Brandt S.L., Puray-Chavez M., Reid T.B., Godornes C., Molini B.J., Benzler M., Hartig J.S., Lukehart S.A., Centurion-Lara A. (2012) Comparative investigation of the genomic regions involved in antigenic variation of the tprK antigen among treponemal species, subspecies, and strains. J. Bacteriol., 194(16), 4208-4225. CrossRef Scholar google search
Guo J.U., Bartel D.P. (2016) RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science, 353(6306), aaf5371. CrossRef Scholar google search
Shao X., Zhang W., Umar M.I., Wong H.Y., Seng Z., Xie Y., Zhang Y., Yang L., Kwok C.K., Deng X. (2020) RNA G-Quadruplex structures mediate gene regulation in bacteria. mBio, 11(1), e02926-19. CrossRef Scholar google search
Martinez-Antonio A., Collado-Vides J. (2003) Identifying global regulators in transcriptional regulatory networks in bacteria. Curr. Opin. Microbiol., 6(5), 482-489. CrossRef Scholar google search
Rui S., Tse-Dinh Y.C. (2003) Topoisomerase function during bacterial responses to environmental challenge. Front. Biosci., 8, D256-D263. CrossRef Scholar google search
Huo Y.X., Rosenthal A.Z., Gralla J.D. (2008) General stress response signalling: unwrapping transcription complexes by DNA relaxation via the sigma38 C-terminal. Mol. Microbiol., 70(2), 369-378. CrossRef Scholar google search
Yadav P., Kim N., Kumari M., Verma S., Sharma T.K., Yadav V., Kumar A. (2021) G-quadruplex structures in bacteria: biological relevance and potential as an antimicrobial target. J. Bacteriol., 203(13), e0057720. CrossRef Scholar google search
Kumari N., Vartak S.V., Dahal S., Kumari S., Desai S.S., Gopalakrishnan V., Choudhary B., Raghavan S.C. (2019) G-quadruplex structures contribute to differential radiosensitivity of the human genome. iScience, 21, 288-307. CrossRef Scholar google search
Lim S., Yoon H., Ryu S., Jung J., Lee M., Kim D. (2006) A comparative evaluation of radiation-induced DNA damage using real-time PCR: influence of base composition. Radiation Res., 165(4), 430-437. CrossRef Scholar google search
Ghosal D., Omelchenko M.V., Gaidamakova E.K., Matrosova V.Y., Vasilenko A., Venkateswaran A., Zhai M., Kostandarithes H.M., Brim H., Makarova K.S., Wackett L.P., Fredrickson J.K., Daly M.J. (2005) How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol. Rev., 29(2), 361-375. CrossRef Scholar google search
Al-Najjar M.A.A., Albokari M.M. (2019) Shifts in microbial community composition in tannery-contaminated soil in response to increased gamma radiation. Annals Microbiology, 69(13), 1567-1577. CrossRef Scholar google search
Mishra S.K., Shankar U., Jain N., Sikri K., Tyagi J.S., Sharma T.K., Mergny J.L., Kumar A. (2019) Characterization of G-quadruplex motifs in espB, espK, and cyp51 genes of Mycobacterium tuberculosis as potential drug targets. Molecular Therapy Nucleic Acids, 16, 698-706. CrossRef Scholar google search
Agapov A.A., Kulbachinskiy A.V. (2015) Mechanisms of stress resistance and gene regulation in the radioresistant bacterium Deinococcus radiodurans. Biochemistry (Moscow), 80(10), 1201-1216. CrossRef Scholar google search
Cahoon L.A., Seifert H.S. (2009) An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science, 325(5941), 764-767. CrossRef Scholar google search
Norris S.J. (2014) vls antigenic variation systems of Lyme disease Borrelia: eluding host immunity through both random, segmental gene conversion and framework heterogeneity. Microbiology Spectrum, 2(6), DOI: 10.1128/microbiolspec.mdna3-0038-2014. CrossRef Scholar google search
Centurion-Lara A., LaFond R.E., Hevner K., Godornes C., Molini B.J., van Voorhis W.C., Lukehart S.A. (2004) Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol. Microbiol., 52(6), 1579-1596. CrossRef Scholar google search
Jain N., Mishra S.K., Shankar U., Jaiswal A., Sharma T.K., Kodgire P., Kumar A. (2020) G-quadruplex stabilization in the ions and maltose transporters gene inhibit Salmonella enterica growth and virulence. Genomics, 112(6), 4863. CrossRef Scholar google search
Mishra S.K., Jain N., Shankar U., Tawani A., Sharma T.K., Kumar A. (2019) Characterization of highly conserved G-quadruplex motifs as potential drug targets in Streptococcus pneumoniae. Sci. Rep., 9(1), 1791. CrossRef Scholar google search
Shankar U., Jain N., Mishra S.K., Sharma T.K., Kumar A. (2020) Conserved G-quadruplex motifs in gene promoter region reveals a novel therapeutic approach to target multi-drug resistance Klebsiella pneumoniae. Front. Microbiol., 11, 1269. CrossRef Scholar google search
Gates A.J., Luque-Almagro V.M., Goddard A.D., Ferguson S.J., Roldan M.D., Richardson D.J. (2011) A composite biochemical system for bacterial nitrate and nitrite assimilation as exemplified by Paracoccus denitrificans. Biochem. J., 435(3), 743-753. CrossRef Scholar google search
Yadav P., Harcy V., Argueso J.L., Dominska M., Jinks-Robertson S., Kim N. (2014) Topoisomerase I plays a critical role in suppressing genome instability at a highly transcribed G-quadruplex-forming sequence. PLOS Genetics, 10(12), e1004839. CrossRef Scholar google search
Arimondo P.B., Riou J.F., Mergny J.L., Tazi J., Sun J.S., Garestier T., Hélène C. (2000) Interaction of human DNA topoisomerase I with G-quartet structures. Nucleic Acids Res., 28(24), 4832-4838. CrossRef Scholar google search
Gray L.T., Vallur A.C., Eddy J., Maizels N. (2014) G quadruplexes are genomewide targets of transcriptional helicases XPB and XPD. Nature Chem. Biol., 10(4), 313-318. CrossRef Scholar google search
Estep K.N., Butler T.J., Ding J., Brosh R.M. (2017) G4-interacting DNA helicases and polymerases: potential therapeutic targets. Curr. Med. Chem., 26(16), 2881-2897. CrossRef Scholar google search
Cheung I., Schertzer M., Rose A., Lansdorp P.M. (2002) Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nature Genetics, 31(4), 405-409. CrossRef Scholar google search
Kota S., Misra H.S. (2015) Topoisomerase IB of Deinococcus radiodurans resolves guanine quadruplex DNA structures in vitro. J. Biosci., 40(5), 833-843. CrossRef Scholar google search
Wu X., Maizels N. (2001) Substrate-specific inhibition of RecQ helicase. Nucleic Acids Res., 29(8), 1765-1771. CrossRef Scholar google search
Shukla K., Thakur R.S., Ganguli D., Rao D.N., Nagaraju G. (2017) Escherichia coli and Neisseria gonorrhoeae UvrD helicase unwinds G4 DNA structures. Biochem. J., 474(21), 3579-3597. CrossRef Scholar google search
Paul T., Voter A.F., Cueny R.R., Gavrilov M., Ha T., Keck J.L., Myong S. (2020) E. coli Rep helicase and RecA recombinase unwind G4 DNA and are important for resistance to G4-stabilizing ligands. Nucleic Acids Res., 48(12), 6640-6653. CrossRef Scholar google search
Saha T., Shukla K., Thakur R.S., Desingu A., Nagaraju G. (2019) Mycobacterium tuberculosis UvrD1 and UvrD2 helicases unwind G-quadruplex DNA. FEBS J., 286(11), 2062-2086. CrossRef Scholar google search
Thakur R.S., Desingu A., Basavaraju S., Subramanya S., Rao D.N., Nagaraju G. (2014) Mycobacterium tuberculosis DinG Is a structure-specific helicase that unwinds G4 DNA: implications for targeting G4 DNA as a novel therapeutic approach. J. Biol. Chem., 289(36), 25112-25136. CrossRef Scholar google search
Waller Z.A.E., Pinchbeck B.J., Buguth B.S., Meadows T.G., Richardson D.J., Gates A.J. (2016) Control of bacterial nitrate assimilation by stabilization of G-quadruplex DNA. Chemical Communications, 52(92), 13511. CrossRef Scholar google search
Perrone R., Lavezzo E., Riello E., Manganelli R., Palù G., Toppo S., Provvedi R., Richter S.N. (2017) Mapping and characterization of G-quadruplexes in Mycobacterium tuberculosis gene promoter regions. Sci. Rep., 7(1), 5743. CrossRef Scholar google search
Shankar U., Jain N., Majee P., Kodgire P., Sharma T.K., Kumar A. (2020) Exploring computational and biophysical tools to study the presence of G-quadruplex structures: a promising therapeutic solution for drug-resistant Vibrio cholerae. Front. Genetics, 11, 935. CrossRef Scholar google search
Shitikov E., Bespiatykh D., Malakhova M., Bespyatykh J., Bodoev I., Vedekhina T., Zaychikova M., Veselovsky V., Klimina K., Ilina E., Varizhuk A. (2022) Genome-wide transcriptional response of Mycobacterium smegmatis MC2155 to G-quadruplex ligands BRACO-19 and TMPyP4. Front. Microbiol., 13, 817024. CrossRef Scholar google search
Robinson J., Raguseo F., Nuccio S.P., Liano D., di Antonio M. (2021) DNA G-quadruplex structures: more than simple roadblocks to transcription? Nucleic Acids Res., 49(15), 8419-8431. CrossRef Scholar google search