1. Siberian State Medical University, Tomsk, Russia 2. Siberian State Medical University, Tomsk, Russia; Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
The SARS-CoV-2 pandemia had stimulated the numerous publications emergence on the α1-proteinase inhibitor (α1-PI, α1-antitrypsin), primarily when it was found that high mortality in some regions corresponded to the regions with deficient α1-PI alleles. By analogy with the last century's data, when the root cause of the α1-antitrypsin, genetic deficiency leading to the elastase activation in pulmonary emphysema, was proven. It is evident that proteolysis hyperactivation in COVID-19 may be associated with α1-PI impaired functions. The purpose of this review is to systematize scientific data, critical directions for translational studies on the role of α1-PI in SARS-CoV-2-induced proteolysis hyperactivation as a diagnostic marker and a target in therapy. This review describes the proteinase-dependent stages of a viral infection: the reception and virus penetration into the cell, the plasma aldosterone-angiotensin-renin, kinins, blood clotting systems imbalance. The ACE2, TMPRSS, ADAM17, furin, cathepsins, trypsin- and elastase-like serine proteinases role in the virus tropism, proteolytic cascades activation in blood, and the COVID-19-dependent complications is presented. The analysis of scientific reports on the α1-PI implementation in the SARS-CoV-2-induced inflammation, the links with the infection severity, and comorbidities were carried out. Particular attention is paid to the acquired α1-PI deficiency in assessing the patients with the proteolysis overactivation and chronic non-inflammatory diseases that are accompanied by the risk factors for the comorbidities progression, and the long-term consequences of COVID-19 initiation. Analyzed data on the search and proteases inhibitory drugs usage in the bronchopulmonary cardiovascular pathologies therapy are essential. It becomes evident the antiviral, anti-inflammatory, anticoagulant, anti-apoptotic effect of α1-PI. The prominent data and prospects for its application as a targeted drug in the SARS-CoV-2 acquired pneumonia and related disorders are presented.
Akbasheva O.E, Spirina L.V., Dyakov D.A., Masunova N.V. (2022) Proteolysis and deficiency of α1-proteinase inhibitor in SARS-CoV-2 infection. Biomeditsinskaya Khimiya, 68(3), 157-176.
Akbasheva O.E et al. Proteolysis and deficiency of α1-proteinase inhibitor in SARS-CoV-2 infection // Biomeditsinskaya Khimiya. - 2022. - V. 68. -N 3. - P. 157-176.
Akbasheva O.E et al., "Proteolysis and deficiency of α1-proteinase inhibitor in SARS-CoV-2 infection." Biomeditsinskaya Khimiya 68.3 (2022): 157-176.
Akbasheva, O. E,, Spirina, L. V., Dyakov, D. A., Masunova, N. V. (2022). Proteolysis and deficiency of α1-proteinase inhibitor in SARS-CoV-2 infection. Biomeditsinskaya Khimiya, 68(3), 157-176.
Ghahramani S., Tabrizi R., Lankarani K.B., Kashani S.M., Rezaei S., Zeidi N., Akbari M., Heydari S.T., Akbari H., Nowrouzi-Sohrabi P., Ahmadizar F. (2020) Laboratory features of severe vs. non-severe COVID-19 patients in Asian populations: a systematic review and meta-analysis. Eur. J. Med. Res., 25(1), 30. CrossRef Scholar google search
Wang F., Hou H., Wang T., Luo Y., Tang G., Wu S., Zhou H., Sun Z. (2020) Establishing a model for predicting the outcome of COVID-19 based on combination of laboratory tests. Travel. Med. Infect. Dis., 36, 101782. CrossRef Scholar google search
Abdelrahman Z., Li M., Wang X. (2020) Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV and influenza A respiratory viruses. Front. Immunol., 11, 552909. CrossRef Scholar google search
Azer S.A. (2020) COVID-19: pathophysiology, diagnosis, complications and investigational therapeutics. New Microbes New Infect., 37, 100738. CrossRef Scholar google search
Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L. (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395(10223), 507-513. CrossRef Scholar google search
Valle C., de Lamballerie X., Canard B., Seidah N.G., Decroly E. (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res., 176, 104742. CrossRef Scholar google search
Du L., He Y., Zhou Y., Liu S., Zheng B.J., Jiang S. (2009) The spike protein of SARS-CoV – a target for vaccine and therapeutic development. Nat. Rev. Microbiol., 7(3), 226-236. CrossRef Scholar google search
Millet J.K., Whittaker G.R. (2015) Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res., 202, 120-134. CrossRef Scholar google search
Hörnich B.F., Großkopf A.K., Schlagowski S., Tenbusch M., Kleine-Weber H., Neipel F., Stahl-Hennig C., Hahn A.S. (2021) SARS-CoV-2 and SARS-CoV spike-mediated cell-cell fusion differ in their requirements for receptor expression and proteolytic activation. J. Virol., 95(9), e00002-21. CrossRef Scholar google search
Kaur U., Chakrabarti S.S., Ojha B., Pathak B.K., Singh A., Saso L., Chakrabarti S. (2021) Targeting host cell proteases to prevent SARS-CoV-2 invasion. Curr. Drug Targets, 22(2), 192-201. CrossRef Scholar google search
Senapati S., Banerjee P., Bhagavatula S., Kushwaha P.P., Kumar S. (2021) Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19. J. Genet., 100(1), 12. CrossRef Scholar google search
Dai W., Zhang B., Jiang X.M., Su H., Li J., Zhao Y., Xie X., Jin Z., Peng J., Liu F., Li C., Li Y., Bai F., Wang H., Cheng X., Cen X., Hu S., Yang X., Wang J., Liu X., Xiao G., Jiang H., Rao Z., Zhang L.K., Xu Y., Yang H., Liu H. (2020) Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 368(6497), 1331-1335. CrossRef Scholar google search
Ullrich S., Nitsche C. (2020) The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 30(17), 127377. CrossRef Scholar google search
Vianello A., del Turco S., Babboni S., Silvestrini B., Ragusa R., Caselli C., Melani L., Fanucci L., Basta G. (2021) The fight against COVID-19 on the multi-protease front and surroundings: could an early therapeutic approach with repositioning drugs prevent the disease severity? Biomedicines, 9, 710. CrossRef Scholar google search
Faria N., Inês Costa M., Gomes J., Sucena M. (2021) Alpha-1 antitrypsin deficiency severity and the risk of COVID-19: A Portuguese cohort. Respir. Med., 181, 106387. CrossRef Scholar google search
McElvaney O.J., McEvoy N.L., McElvaney O.F., Carroll T.P., Murphy M.P., Dunlea D.M., Choileain O.N., Clarke J., O’Connor E., Hogan G., Ryan D., Sulaiman I., Gunaratnam C., Branagan P., O’Brien M.E., Morgan R.K., Costello R.W., Hurley K., Walsh S., de Barra E., McNally C., McConkey S., Boland F., Galvin S., Kiernan F., O’Rourke J., Dwyer R., Power M., Geoghegan P., Larkin C., O’Leary R.A., Freeman J., Gaffney A., Marsh B., Curley G.F., McElvaney N.G. (2020) Characterization of the inflammatory response to severe COVID-19 illness. Am. J. Respir. Crit. Care Med., 202(6), 812-821. CrossRef Scholar google search
Shapira G., Shomron N., Gurwitz D. (2020) Ethnic differences in alpha-1 antitrypsin deficiency allele frequencies may partially explain national differences in COVID-19 fatality rates. FASEB J., 34(11), 14160-14165. CrossRef Scholar google search
Azouz N.P., Klingler A.M., Callahan V., Akhrymuk I.V., Elez K., Raich L., Henry B.M., Benoit J.L., Benoit S.W., Noé F., Kehn-Hall K., Rothenberg M.E. (2020) Alpha 1 antitrypsin is an inhibitor of the SARS-CoV-2-priming protease TMPRSS2. BioRxiv., 2020.05.04.077826. CrossRef Scholar google search
Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271-280.e8. CrossRef Scholar google search
Oguntuyo K.Y., Stevens C.S., Siddiquey M.N., Schilke R.M., Woolard M.D., Zhang H., Acklin J.A., Ikegame S., Huang C.T., Lim J.K., Cross R.W., Geisbert T.W., Ivanov S.S., Kamil J.P., Lee B. (2020) In plain sight: the role of alpha-1-antitrypsin in COVID-19 pathogenesis and therapeutics. Preprint. BioRxiv. 2020.08.14.248880. CrossRef Scholar google search
Abd El Hadi S.R., Zien El-Deen E.E., Bahaa M.M., Sadakah A.A., Yassin H.A. (2021) COVID-19: Vaccine delivery system, drug repurposing and application of molecular modeling approach. Drug Des. Devel. Ther., 15, 3313-3330. CrossRef Scholar google search
Fehr A.R., Perlman S. (2015) Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol., 1282, 1-23. CrossRef Scholar google search
Belen-Apak F.B., Sarialioglu F. (2020) The old but new: Can unfractioned heparin and low molecular weight heparins inhibit proteolytic activation and cellular internalization of SARS-CoV2 by inhibition of host cell proteases? Med. Hypotheses, 142, 109743. CrossRef Scholar google search
Wu Z., Harrich D., Li Z., Hu D., Li D. (2021) The unique features of SARS-CoV-2 transmission: Comparison with SARS-CoV, MERS-CoV and 2009 H1N1 pandemic influenza virus. Rev. Med. Virol., 31(2), e2171. CrossRef Scholar google search
Hoffmann M., Kleine-Weber H., Pöhlmann S.A. (2020) Multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell, 78(4), 779-784.e5. CrossRef Scholar google search
Shang J., Wan Y., Luo C., Ye G., Geng Q., Auerbach A., Li F. (2020) Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 117(21), 11727-11734. CrossRef Scholar google search
Abuo-Rahma G.E.-D.A., Mohamed M.F., Ibrahim T.S., Shoman M.E., Samir E., Abd El-Baky R.M. (2020) Potential repurposed SARS-CoV-2 (COVID-19) infection drugs. RSC Advances, 10, 26895-26916. Scholar google search
Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., Xiao G. (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 30(3), 269-271. CrossRef Scholar google search
Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang Z., Lu G., Qiao C., Hu Y., Yuen K.Y., Zhou H., Yan J. (2020) Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894-904.e9. CrossRef Scholar google search
Li K., Meyerholz D.K., Bartlett J.A., McCray P.B. (2021) The TMPRSS2 inhibitor nafamostat reduces SARS-CoV-2 pulmonary infection in mouse models of COVID-19. MBio, 12(4), e0097021. CrossRef Scholar google search
Belouzard S., Chu V.C., Whittaker G.R. (2009) Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. USA, 106(14), 5871-5876. CrossRef Scholar google search
Benton D.J., Wrobel A.G., Xu P., Roustan C., Martin S.R., Rosenthal P.B., Skehel J.J., Gamblin S.J. (2020) Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature, 588(7837), 327-330. CrossRef Scholar google search
Lan J., Ge J., Yu J., Shan S., Zhou H., Fan S., Zhang Q., Shi X., Wang Q., Zhang L., Wang X. (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215-220. CrossRef Scholar google search
Heurich A., Hofmann-Winkler H., Gierer S., Liepold T., Jahn O., Pöhlmann S. (2014) TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol., 88(2), 1293-1307. CrossRef Scholar google search
Hussain M., Jabeen N., Amanullah A., Baig A.A., Aziz B., Shabbir S., Raza F., Uddin N. (2020) Molecular docking between human TMPRSS2 and SARS-CoV-2 spike protein: Conformation and intermolecular interactions. AIMS Microbiol., 6(3), 350-360. CrossRef Scholar google search
Fuentes-Prior P. (2021) Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection. J. Biol. Chem., 296, 100135. CrossRef Scholar google search
Iwata-Yoshikawa N., Okamura T., Shimizu Y., Hasegawa H., Takeda M., Nagata N. (2019) TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol., 93(6), e01815-18. CrossRef Scholar google search
Fathema K., Hassan M.N., Mazumder M.W., Benzamin M., Ahmed M., Islam M.R., Haque N., Sutradhar P.K., Rahman A.R., Rukunuzzaman M. (2021) COVID-19 in children: gastrointestinal, hepatobiliary and pancreatic manifestation. Mymensingh Med. J., 30(2), 570-579. Scholar google search
Gemmati D., Bramanti B., Serino M.L., Secchiero P., Zauli G., Tisato V. (2020) COVID-19 and individual genetic susceptibility/receptivity: role of ACE1/ACE2 genes, immunity, inflammation and coagulation. Might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males? Int. J. Mol. Sci., 21(10), 3474. CrossRef Scholar google search
Guney C., Akar F. (2021) Epithelial and endothelial expressions of ACE2: SARS-CoV-2 entry routes. J. Pharm. Sci., 24, 84-93. CrossRef Scholar google search
Iba T., Connors J.M., Levy J.H. (2020) The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm. Res., 69(12), 1181-1189. CrossRef Scholar google search
Xu H., Zhong L., Deng J., Peng J., Dan H., Zeng X., Li T., Chen Q. (2020) High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci., 12(1), 8. CrossRef Scholar google search
Guzik T.J., Mohiddin S.A., Dimarco A., Patel V., Savvatis K., Marelli-Berg F.M., Madhur M.S., Tomaszewski M., Maffia P., D'Acquisto F., Nicklin S.A., Marian A.J., Nosalski R., Murray E.C., Guzik B., Berry C., Touyz R.M., Kreutz R., Wang D.W., Bhella D., Sagliocco O., Crea F., Thomson E.C., McInnes I.B. (2020) COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc. Res., 116(10), 1666-1687. CrossRef Scholar google search
Dalpiaz P.L., Lamas A.Z., Caliman I.F., Ribeiro R.F., Abreu G.R., Moyses M.R., Andrade T.U., Gouvea S.A., Alves M.F., Carmona A.K., Bissoli N.S. (2015) Sex hormones promote opposite effects on ACE and ACE2 activity, hypertrophy and cardiac contractility in spontaneously hypertensive rats. PLoS One, 10(5), e0127515. CrossRef Scholar google search
Bahmad H.F., Abou-Kheir W. (2020) Crosstalk between COVID-19 and prostate cancer. Prostate Cancer Prostatic Diseases, 23(4), 561-563. CrossRef Scholar google search
Ianevski A., Yao R., Lysvand H., Grodeland G., Legrand N., Oksenych V., Zusinaite E., Tenson T., Bjoras M., Kainov D.E. (2021) Nafamostat-interferon-α combination suppresses SARS-CoV-2 infection in vitro and in vivo by cooperatively targeting host TMPRSS2. Viruses, 13(9), 1768. CrossRef Scholar google search
Zipeto D., Palmeira J.D.F., Argañaraz G.A., Argañaraz E.R. (2020) ACE2/ADAM17/TMPRSS2 interplay may be the main risk factor for COVID-19. Front. Immunol., 11, 576745. CrossRef Scholar google search
Tang N., Li D., Wang X., Sun Z. (2020) Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost., 18(4), 844-847. CrossRef Scholar google search
Hrenak J., Simko F. (2020) Renin-Angiotensin system: An important player in the pathogenesis of acute respiratory distress syndrome. Int. J. Mol. Sci., 21(21), 8038. CrossRef Scholar google search
Bai X., Hippensteel J., Leavitt A., Maloney J.P., Beckham D., Garcia C., Li Q., Freed B.M., Ordway D., Sandhaus R.A., Chan E.D. (2021) Hypothesis: Alpha-1-antitrypsin is a promising treatment option for COVID-19. Med. Hypotheses, 146, 110394. CrossRef Scholar google search
Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. (2020) The proximal origin of SARS-CoV-2. Nat. Med., 26(4), 450-452. CrossRef Scholar google search
Seyran M., Pizzol D., Adadi P., El-Aziz T.M.A., Hassan S.S., Soares A., Kandimalla R., Lundstrom K., Tambuwala M., Aljabali AA.A., Lal A., Azad G.K., Choudhury P.P., Uversky V.N., Sherchan S.P., Uhal B.D., Rezaei N., Brufsky A.M. (2021) Questions concerning the proximal origin of SARS-CoV-2. J. Med. Virol., 93(3), 1204-1206. CrossRef Scholar google search
Oz M., Lorke D.E. (2021) Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed. Pharmacother., 136, 111193. CrossRef Scholar google search
Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281-292. CrossRef Scholar google search
Fitzgerald K. (2020) Furin protease: from SARS CoV-2 to anthrax, diabetes, and hypertension. Perm. J., 24, 20.187. CrossRef Scholar google search
van Lamvan T., Ivanova T., Hardes K., Heindl M.R., Morty R.E., Böttcher-Friebertshäuser E., Lindberg I., Than M.E., Dahms S.O., Steinmetzer T. (2019) Design, synthesis, and characterization of macrocyclic inhibitors of the proprotein convertase furin. ChemMedChem, 14(6), 673-685. CrossRef Scholar google search
Palit P., Chattopadhyay D., Thomas S., Kundu A., Kim H.S., Rezaei N. (2021) Phytopharmaceuticals mediated furin and TMPRSS2 receptor blocking: can it be a potential therapeutic option for Covid-19? Phytomedicine, 85, 153396. CrossRef Scholar google search
Shamanaev A., Emsley J., Gailani D. (2021) Proteolytic activity of contact factor zymogens. J. Thromb. Haemost., 19(2), 330-341. CrossRef Scholar google search
Banu N., Panikar S.S., Leal L.R., Leal A.R. (2020) Protective role of ACE2 and its downregulation in SARS-CoV-2 infection leading to Macrophage Activation Syndrome: Therapeutic implications. Life Sci., 256, 117905. CrossRef Scholar google search
Ciulla M.M. (2020) SARS-CoV-2 downregulation of ACE2 and pleiotropic effects of ACEIs/ARBs. Hypertens. Res., 43, 985-986. CrossRef Scholar google search
Gheblawi M., Wang K., Viveiros A., Nguyen Q., Zhong J.C., Turner A.J., Raizada M.K., Grant M.B., Oudit G.Y. (2020) Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ. Res., 126(10), 1456-1474. CrossRef Scholar google search
Zoufaly A., Poglitsch M., Aberle J.H., Hoepler W., Seitz T., Traugott M., Grieb A., Pawelka E., Laferl H., Wenisch C., Neuhold S., Haider D., Stiasny K., Bergthaler A., Puchhammer-Stoeckl E., Mirazimi A., Montserrat N., Zhang H., Slutsky A.S., Penninger J.M. (2020) Human recombinant soluble ACE2 in severe COVID-19. Lancet Respir. Med., 8(11), 1154-1158. CrossRef Scholar google search
Monteil V., Dyczynski M., Lauschke V.M., Kwon H., Wirnsberger G., Youhanna S., Zhang H., Slutsky A.S., Hurtado del Pozo C., Horn M., Montserrat N., Penninger J.M., Mirazimi A. (2021) Human soluble ACE2 improves the effect of remdesivir in SARS-CoV-2 infection. EMBO Mol. Med., 13(1), e13426. CrossRef Scholar google search
Milewska A., Falkowski K., Kulczycka M., Bielecka E., Naskalska A., Mak P., Lesner A., Ochman M., Urlik M., Diamandis E., Prassas I., Potempa J., Kantyka T., Pyrc K. (2020) Kallikrein 13 serves as a priming protease during infection by the human coronavirus HKU1. Sci. Signal., 13(659), eaba9902. CrossRef Scholar google search
Ivanov I., Verhamme I.M., Sun M.F., Mohammed B., Cheng Q., Matafonov A., Dickeson S.K., Joseph K., Kaplan A.P., Gailani D. (2020) Protease activity in single-chain prekallikrein. Blood, 135(8), 558-567. CrossRef Scholar google search
Weidmann H., Heikaus L., Long A.T., Naudin C., Schlüter H., Renné T. (2017) The plasma contact system, a protease cascade at the nexus of inflammation, coagulation and immunity. Biochim. Biophys. Acta Mol. Cell Res., 1864(11PtB), 2118-2127. CrossRef Scholar google search
Scharfstein J., Ramos P., Barral-Netto M.G. (2017) Protein-coupled kinin receptors and immunity against pathogens. Adv. Immunol., 136, 29-84. CrossRef Scholar google search
Talmi-Frank D., Altboum Z., Solomonov I., Udi Y., Jaitin D.A., Klepfish M., David E., Zhuravlev A., Keren-Shaul H., Winter D.R., Gat-Viks I., Mandelboim M., Ziv T., Amit I., Sagi I. (2016) Extracellular matrix proteolysis by MT1-MMP contributes to influenza-related tissue damage and mortality. Cell Host Microbe, 20(4), 458-470. CrossRef Scholar google search
Dreymueller D, Uhlig S., Ludwig A. (2015) ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets. Am. J. Physiol. Lung Cell Mol. Physiol., 308(4), L325-L343. CrossRef Scholar google search
Hogarth D.K., Rachelefsky G. (2008) Screening and familial testing of patients for alpha 1-antitrypsin deficiency. Chest, 133(4), 981-988. CrossRef Scholar google search
Chen V.C., Chao L., Chao J. (2000) A positively charged loop on the surface of kallistatin functions to enhance tissue kallikrein inhibition by acting as a secondary binding site for kallikrein. J. Biol. Chem., 275(51), 40371-40377. CrossRef Scholar google search
Elrashdy F., Redwan E.M., Uversky V.N. (2020) Why COVID-19 transmission is more efficient and aggressive than viral transmission in previous coronavirus epidemics? Biomolecules, 10(9), 1312. CrossRef Scholar google search
Kastenhuber E.R., Jaimes J.A., Johnson J.L., Mercadante M., Muecksch F., Weisblum Y., Bram Y., Schwartz R.E., Whittaker G.R., Cantley L.C. (2021) Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. Preprint. BioRxiv, 2021.03.31.437960. CrossRef Scholar google search
McGonagle D., O'Donnell J.S., Sharif K., Emery P., Bridgewood C. (2020) Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol., 2(7), e437-e445. CrossRef Scholar google search
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497-506. CrossRef Scholar google search
Kipshidze N., Dangas G., White C.J., Siddiqui F., Lattimer C.R., Carter C.A., Fareed J. (2020) Viral coagulopathy in patients with COVID-19: Treatment and care. Clin. Appl. Thromb. Hemost., 26, 1076029620936776. CrossRef Scholar google search
Zuo Y., Estes S.K., Ali R.A., Gandhi A.A., Yalavarthi S., Shi H., Sule G., Gockman K., Madison J.A., Zuo M., Yadav V., Wang J., Woodard W., Lezak S.P., Lugogo N.L., Smith S.A., Morrissey J.H., Kanthi Y., Knight J.S. (2020) Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med., 12(570), eabd3876. CrossRef Scholar google search
Barkagan Z.S., Momot A.P. (2008) Diagnosis and controlled therapy of hemostasis disorders. 3rd edition. Moscow, NEWDIAMED, 292 p. Scholar google search
Frydman G.H., Streiff M.B., Connors J.M., Piazza G. (2020) The potential role of coagulation factor Xa in the pathophysiology of COVID-19: a role for anticoagulants as multimodal therapeutic agents. TH Open, 4(4), e288-e299. CrossRef Scholar google search
Moschonas I.C., Tselepis A.D. (2021) SARS-CoV-2 infection and thrombotic complications: a narrative review. J. Thromb. Thrombolysis, 52(1), 111-123. CrossRef Scholar google search
Janssen R., Visser M.P.J., Dofferhoff A.S.M., Vermeer C., Janssens W., Walk J. (2021) Vitamin K metabolism as the potential missing link between lung damage and thromboembolism in coronavirus disease 2019. Br. J. Nutr., 126(2), 191-198. CrossRef Scholar google search
Menter T., Tzankov A. (2021) Investigations of pathologists as a key to understanding coronavirus disease 2019. Pathobiology, 88(1), 11-14. CrossRef Scholar google search
Ponti G., Maccaferri M., Ruini C., Tomasi A., Ozben T. (2020) Biomarkers associated with COVID-19 disease progression. Crit. Rev. Clin Lab. Sci., 57(6), 389-399. CrossRef Scholar google search
Sriram K., Insel P.A. (2021) Inflammation and thrombosis in COVID-19 pathophysiology: proteinase-activated and purinergic receptors as drivers and candidate therapeutic targets. Physiol. Rev., 101(2), 545-567. CrossRef Scholar google search
Ng H., Havervall S., Rosell A., Aguilera K., Parv K., von Meijenfeldt F.A., Lisman T., Mackman N., Thålin C., Phillipson M. (2021) Circulating markers of neutrophil extracellular traps are of prognostic value in patients with COVID-19. Arterioscler. Thromb. Vasc. Biol., 41(2), 988-994. CrossRef Scholar google search
Thierry A.R., Roch B. (2020) Neutrophil extracellular traps and by-products play a key role in COVID-19: pathogenesis, risk factors, and therapy. J. Clin. Med., 9(9), 2942. CrossRef Scholar google search
Hashimoto S., Okayama Y., Shime N., Kimura A., Funakoshi Y., Kawabata K., Ishizaka A., Amaya F. (2008) Neutrophil elastase activity in acute lung injury and respiratory distress syndrome. Respirology, 13(4), 581-584. CrossRef Scholar google search
Zhou Y., Fu B.., Zheng X, Wang D., Zhao C., Qi Y., Sun R., Tian Z., Xu X., Wei H. (2020) Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl. Sci. Rev., 7(6), 998-1002. CrossRef Scholar google search
Kawai T., Akira S. (2011) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 11(5), 373-384. CrossRef Scholar google search
Shi Y., Wang Y., Shao C., Shi Y., Wang Y., Huang J., Gan J., Huang X., Bucci E., Piacentini M., Ippolito G., Melino G. (2020) COVID-19 infection: the perspectives on immune responses. Cell Death Differ., 27(5), 1451-1454. CrossRef Scholar google search
Kono H., Rock K.L. (2008) How dying cells alert the immune system to danger. Nat. Rev. Immunol., 8(4), 279-289. CrossRef Scholar google search
Mauri T., Caironi P., Tognoni G., Masson S., Fumagalli R., Pesenti A., Romero M., Fanizza C., Caspani L., Faenza S., Grasselli G., Iapichino G., Antonelli M., Parrini V., Fiore G., Latini R., Gattinoni L. (2017) Pentraxin 3 in patients with severe sepsis or shock: the ALBIOS trial. Eur. J. Clin. Invest., 47(1), 73-83. CrossRef Scholar google search
Brunetta E., Folci M., Bottazzi B., de Santis M., Gritti G., Protti A., Mapelli S.N., Bonovas S., Piovani D., Leone R., My I., Zanon V., Spata G., Bacci M., Supino D., Carnevale S., Sironi M., Davoudian S., Peano C., Landi F., di Marco F., Raimondi F., Gianatti A., Angelini C., Rambaldi A., Garlanda C., Ciccarelli M., Cecconi M., Mantovani A. (2021) Macrophage expression and prognostic significance of the long pentraxin PTX3 in COVID-19. Nat. Immunol., 22(1), 19-24. CrossRef Scholar google search
del Rio C., Collins L.F., Malani P. (2020) Long-term health consequences of COVID-19. JAMA, 324(17), 1723-1724. CrossRef Scholar google search
Huang C., Huang L., Wang Y., Li X., Ren L., Gu X., Kang L., Guo L., Liu M., Zhou X., Luo J., Huang Z., Tu S., Zhao Y., Chen L., Xu D., Li Y., Li C., Peng L., Xie W., Cui D., Shang L., Fan G., Xu J., Wang G., Zhong J., Wang C., Wang J., Zhang D., Cao B. (2021) 6-Month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet, 397(10270), 220-232. CrossRef Scholar google search
Reynolds H.R., Adhikari S., Iturrate E. (2020) RAAS inhibitors and risk of Covid-19. N. Engl. J. Med., 383(20), 1993-1994. CrossRef Scholar google search
Kamyshnyi A., Krynytska I., Matskevych V., Marushchak M., Lushchak O. (2020) Arterial hypertension as a risk comorbidity associated with COVID-19 pathology. Int. J. Hypertens., 2020, 8019360. CrossRef Scholar google search
Fang L., Karakiulakis G., Roth M. (2020) Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med., 8(4), e21. CrossRef Scholar google search
Jordan R.E., Adab P., Cheng K.K. (2020) Covid-19: Risk factors for severe disease and death. BMJ, 368, m1198. CrossRef Scholar google search
Ossovskaya V.S., Bunnett N.W. (2004) Protease-activated receptors: Contribution to physiology and disease. Physiol. Rev., 84(2), 579-621. CrossRef Scholar google search
Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu S., Zhang Y., Chen H., Cao B. (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 395(10229), 1054-1062. CrossRef Scholar google search
del Turco S., Vianello A., Ragusa R., Caselli C., Basta G. (2020) COVID-19 and cardiovascular consequences: Is the endothelial dysfunction the hardest challenge? Thromb. Res., 196, 143-151. CrossRef Scholar google search
Abboud R.T., Vimalanathan S. (2008) Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int. J. Tuberc. Lung Dis., 12(4), 361-367. Scholar google search
Vignola A., Scichilone L., Spatafora N., Bousquet M., Bonsignore J., Bellia G.V. (2003) Effect of age and asthma duration upon elastase and α1-antitrypsin levels in adult asthmatics. Eur. Respir. J., 22(5), 795-801. CrossRef Scholar google search
Chuchalin A.G. (2008) Chronic obstructive pulmonary disease and co-morbidities. Pulmonologia, 2, 5-14. CrossRef Scholar google search
Altshuler A.E., Penn A.H,. Yang J.A., Kim G.R., Schmid-Schönbein G.W. (2012) Protease activity increases in plasma, peritoneal fluid, and vital organs after hemorrhagic shock in rats. PLoS One, 7(3), e32672. CrossRef Scholar google search
Moore A.R., Appelboam A., Kawabata K., da Silva J.A., D'Cruz D., Gowland G., Willoughby D.A. (1999) Destruction of articular cartilage by alpha 2 macroglobulin elastase complexes: role in rheumatoid arthritis. Ann. Rheum. Dis., 58(2), 109-113. CrossRef Scholar google search
Ivanova S.V., Kirpichenok L.N., Kunder E.V. (2009) Spectral-fluorescence analysis and proteolytic activity of blood serum and synovial fluid in arthritis. Zhurnal Grognenskogo gosudarstvennogo medizinskogo universiteta, 4(28), 73-77. Scholar google search
de Paula J.A., Bustos D., Negri G., di Carlo M., Yapur V., Facente A., de Paula A. (1998) Colonic proteinases: increased activity in patients with ulcerative colitis. Medicina (B Aires), 58(3), 262-264. Scholar google search
Fischbeck A., Leucht K., Frey-Wagner I., Bentz S., Pesch T., Kellermeier S., Krebs M., Fried M., Rogler G., Hausmann M. (2011) Sphingomyelin induces cathepsin D-mediated apoptosis in intestinal epithelial cells and increases inflammation in DSS colitis. Gut, 60(1), 55-65. CrossRef Scholar google search
Kotlowski R., Bernstein C.N., Silverberg M.S., Krause D.O. (2008) Population-based case-control study of alpha 1-antitrypsin and SLC11A1 in Crohn's disease and ulcerative colitis. Inflamm. Bowel Dis., 14(8), 1112-1117. CrossRef Scholar google search
Tzourio C., El Amrani M., Robert L., Alpérovitch A. (2000) Serum elastase activity is elevated in migraine. Ann. Neurol., 47(5), 648-651. Scholar google search
Liotta L.A., Schiffmann E. (1988) Tumour motility factors. Cancer Surv., 7(4), 631-652. Scholar google search
Matrisian L.M., Sledge G.W. Jr., Mohla S. (2003) Extracellular proteolysis and cancer: meeting summary and future directions. Cancer Res., 63(19), 6105-6109. Scholar google search
Petrosyan A.M., Kharchenko V.Z. (2007) Changes in proteinases of the inhibitory system in patients with gastric cancer. Oncology, 9(4), 303-306. Scholar google search
Ginzberg H.H., Shannon P.T., Suzuki T., Hong O., Vachon E., Moraes T., Abreu M.T., Cherepanov V., Wang X., Chow C.-W., Downey G.P. (2004) Leukocyte elastase induces epithelial apoptosis: Role of mitochondial permeability changes and Akt. Am. J. Physiol. Gastrointest. Liver Physiol., 287(1), G286-G298. CrossRef Scholar google search
Odaka C., Mizuochi T., Yang J., Ding A. (2003) Murine macrophages produce secretory leukocyte protease inhibitor during clearance of apoptotic cells: Implications for resolution of the inflammatory response. J. Immunol., 171(3), 1507-1514. CrossRef Scholar google search
Suzuki T., Moraes T.J., Vachon E., Ginzberg H.H., Huang T.T., Matthay M.A., Hollenberg M.D., Marshall J., McCulloch C.A., Abreu M.T., Chow C.W., Downey G.P. (2005) Proteinase-activated receptor-1 mediates elastase-induced apoptosis of human lung epithelial cells. Am. J. Respir. Cell Mol. Biol., 33(3), 231-247. CrossRef Scholar google search
di Camillo S.J., Carreras I., Panchenko M.V., Stone P.J., Nugent M.A., Foster J.A., Panchenko M.P. (2002) Elastase-released epidermal growth factor recruits epidermal growth factor receptor and extracellular signal-regulated kinases to down-regulate tropoelastin mRNA in lung fibroblasts. J. Biol. Chem., 277(21), 18938-18946. CrossRef Scholar google search
Alcorn J.F., Wright J.R. (2004) Degradation of pulmonary surfactant protein D by Pseudomonas aeruginosa elastase abrogates innate immune function. J. Biol. Chem., 279(29), 30871-30879. CrossRef Scholar google search
Chua F., Dunsmore S.E., Clingen P.H., Mutsaers S.E., Shapiro S.D., Segal A.W., Roes J., Laurent G.J. (2007) Mice lacking neutrophil elastase are resistant to bleomycin-induced pulmonary fibrosis. Am. J. Pathol., 170(1), 65-74. CrossRef Scholar google search
Lucattelli M., Bartalesi B., Cavarra E., Fineschi S., Lunghi B., Martorana P.A., Lungarella G. (2005) Is neutrophil elastase the missing link between emphysema and fibrosis? Evidence from two mouse models. Respir. Res., 6(1), 83. CrossRef Scholar google search
Vasilyeva O.S. (2008) Obstructive pulmonary diseases caused by unfavorable occupational factors. Medizinskaya sestra, 8, 18-20. Scholar google search
Viktorova T.B. (2003) The interaction of genetic and environmental factors in the development of chronic obstructive pulmonary disease. Medizinskaya genetika, 2(2), 77-80. Scholar google search
Bukreeva E.B. (2003) Exogenous and endogenous factors of the formation of chronic obstructive pulmonary disease. Bulletin of Siberian Medicine, 2(1), 75-77. Scholar google search
Darmoul D., Marie J.C., Devaud H., Gratio V., Laburthe M. (2001) Initiation of human colon cancer cell proliferation by trypsin acting at protease-activated receptor-2. Br. J. Cancer, 85(5), 772-779. CrossRef Scholar google search
Elumalai P., Gunadharini D.N., Senthilkumar K., Banudevi S., Arunkumar R., Benson C.S., Sharmila G., Arunakaran J. (2012) Induction of apoptosis in human breast cancer cells by nimbolide through extrinsic and intrinsic pathway. Toxicol. Lett., 215(2), 131-142. CrossRef Scholar google search
Sun Z., Yang P. (2004) Role of imbalance between neutrophil elastase and alpha 1-antitrypsin in cancer development and progression. Lancet Oncol., 5(3), 182-190. CrossRef Scholar google search
Kovacova E., Kinova S., Duris I., Remkova A. (2009) General changes in hemostasis in gastric cancer. Bratisl. Lek. Listy, 110(4), 215-221. Scholar google search
Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F., Gong W., Liu X., Liang J., Zhao Q., Huang H., Yang B., Huang C. (2020) Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol., 5(7), 802-810. CrossRef Scholar google search
Aras Atik E., Özdemir N., Demirkan K. (2020) Can alpha-1 antitrypsin levels be used to predict the prognosis of COVID-19 therapy? Turk. J. Pharm. Sci., 17(6), 576-577. CrossRef Scholar google search
Gooptu B., Lomas D.A. (2008) Polymers and inflammation: disease mechanisms of the serpinopathies. J. Exp. Med., 205(7), 1529-1534. CrossRef Scholar google search
Vianello A., Braccioni F. (2020) Geographical overlap between alpha-1 antitrypsin deficiency and COVID-19 infection in Italy: Casual or causal? Arch. Bronconeumol., 56(9), 609-610. CrossRef Scholar google search
Yang C., Chapman K.R., Wong A., Liu M. (2021) α1-Antitrypsin deficiency and the risk of COVID-19: An urgent call to action. Lancet Respir. Med., 9(4), 337-339. CrossRef Scholar google search
Braillon A., Nguyen-Khac E. (2008) Alpha-1 antitrypsin deficiency and liver disease. Am. J. Med., 121(6), e25-e27. CrossRef Scholar google search
Richardson D.E., Regino C.A., Yao H., Johnson J.V. (2003) Methionine oxidation by peroxymonocarbonate, a reactive oxygen species formed from CO2/bicarbonate and hydrogen peroxide. Free Radic. Biol. Med., 35(12), 1538-1550. CrossRef Scholar google search
Köhnlein T., Welte T. (2008) Alpha-1 antitrypsin deficiency: Pathogenesis, clinical presentation, diagnosis, and treatment. Am. J.Med., 121(1), 3-9. CrossRef Scholar google search
Barlow I., Sewell W.A. (2008) Alpha1-antitrypsin deficiency and Pi typing. J. Allergy Clin. Immunol., 122(3), 658. CrossRef Scholar google search
Crowther D.C., Belorgey D., Miranda E., Kinghorn K.J., Sharp L.K., Lomas D.A. (2004) Practical genetics: Alpha-1-antitrypsin deficiency and the serpinopathies. Eur. J. Hum. Genet., 12(3), 167-172. CrossRef Scholar google search
Parfrey H., Mahadeva R., Lomas D.A. (2003) Alpha (1)-antitrypsin deficiency, liver disease and emphysema. Int. J. Biochem. Cell Biol., 35(7), 1009-1014. CrossRef Scholar google search
de Serres F.J., Blanco I., Fernández-Bustillo E. (2007) PI S and PI Z alpha-1 antitrypsin deficiency worldwide. A review of existing genetic epidemiological data. Monaldi Arch. Chest Dis., 67(4), 184-208. CrossRef Scholar google search
Veremeenko K.N. (1985) Alpha1-proteinase inhibitor and its clinical study. Klinicheskaya medizina, 12, 24-29. Scholar google search
de Serres F., Blanco I. (2014) Role of alpha-1 antitrypsin in human health and disease. J. Intern. Med., 276(4), 311-335. CrossRef Scholar google search
Strange C. (2018) Anti-proteases and alpha-1 antitrypsin augmentation therapy. Respir. Care, 63(6), 690-698. CrossRef Scholar google search
Aldonyte R., Hutchinson T.E., Jin B., Brantly M., Block E., Patel J., Zhang J. (2008) Endothelial alpha-1-antitrypsin attenuates cigarette smoke induced apoptosis in vitro. COPD, 5(3), 153-162. CrossRef Scholar google search
Schuster R., Motola-Kalay N., Baranovski B.M., Bar L., Tov N., Stein M., Lewis E.C., Ayalon M., Sagiv Y. (2020) Distinct anti-inflammatory properties of alpha1-antitrypsin and corticosteroids reveal unique underlying mechanisms of action. Cell Immunol., 356, 104177. CrossRef Scholar google search
Yang C., Keshavjee S., Liu M. (2020) Alpha-1 antitrypsin for COVID-19 treatment: Dual role in antiviral infection and anti-inflammation. Front. Pharmacol., 11, 615398. CrossRef Scholar google search
Churg A., Wang X., Wang R.D., Meixner S.C., Pryzdial E.L., Wright J.L. (2007) Alpha1-antitrypsin suppresses TNF-alpha and MMP-12 production by cigarette smoke-stimulated macrophages. Am. J. Respir. Cell Mol. Biol., 37(2), 144-151. CrossRef Scholar google search
Janciauskiene S.M., Nita I.M., Stevens T. (2007) Alpha1-antitrypsin, old dog, new tricks. Alpha1-antitrypsin exerts in vitro anti-inflammatory activity in human monocytes by elevating cAMP. J. Biol. Chem., 282(12), 8573-8582. CrossRef Scholar google search
Ozeri E., Mizrahi M., Shahaf G., Lewis E.C. (2012) α1-Antitrypsin promotes semimature, IL-10-producing and readily migrating tolerogenic dendritic cells. J. Immunol., 189(1), 146-153. CrossRef Scholar google search
Wettstein L., Weil T., Conzelmann C., Müller J.A., Groß R., Hirschenberger M., Seidel A., Klute S., Zech F., Prelli Bozzo C., Preising N., Fois G., Lochbaum R., Knaff P.M., Mailänder V., Ständker L., Thal D.R., Schumann C., Stenger S., Kleger A., Lochnit G., Mayer B., Ruiz-Blanco Y.B., Hoffmann M., Sparrer K.M.J., Pöhlmann S., Sanchez-Garcia E., Kirchhoff F., Frick M., Münch J. (2021) Alpha-1 antitrypsin inhibits TMPRSS2 protease activity and SARS-CoV-2 infection. Nat. Commun., 12(1), 1726. CrossRef Scholar google search
Bergin D.A., Reeves E.P., Meleady P., Henry M., McElvaney O.J., Carroll T.P., Condron C., Chotirmall S.H., Clynes M., O'Neill S.J., McElvaney N.G. (2010) α1-Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J. Clin. Invest., 120(12), 4236-4250. CrossRef Scholar google search
Jedicke N., Struever N., Aggrawal N., Welte T., Manns M.P., Malek N.P., Zender L., Janciauskiene S., Wuestefeld T. (2014) α1-Antitrypsin inhibits acute liver failure in mice. Hepatology, 59(6), 2299-2308. CrossRef Scholar google search
Jose R.J., Manuel A. (2020) COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir Med., 8(6), e46-e47. CrossRef Scholar google search
Hashemi M., Naderi M., Rashidi H., Ghavami S. (2007) Impaired activity of serum alpha-1-antitrypsin in diabetes mellitus. Diabetes Res. Clin. Pract., 75(2), 246-248. CrossRef Scholar google search
Salem E.S., Grobe N., Elased K.M. (2014) Insulin treatment attenuates renal ADAM17 and ACE2 shedding in diabetic Akita mice. Am. J. Physiol. Renal. Physiol., 306(6), F629-F639. CrossRef Scholar google search
Lindley V.M., Bhusal K., Huning L., Levine S.N., Jain S.K. (2020) Reduced 25(OH) Vitamin D association with lower alpha-1-antitrypsin blood levels in Type 2 diabetic patients. J. Am. Coll. Nutr., 40(2), 98-103. CrossRef Scholar google search
Meltzer D.O., Best T.J., Zhang H., Vokes T., Arora V., Solway J. (2020) Association of vitamin D status and other clinical characteristics with COVID-19 test results. JAMA Netw. Open, 3(9), e2019722. CrossRef Scholar google search
de Loyola M.B., Dos Reis T.T.A., de Oliveira G.X.L.M., da Fonseca Palmeira J., Argañaraz G.A., Argañaraz E.R. (2021) Alpha-1-antitrypsin: A possible host protective factor against Covid-19. Rev. Med. Virol., 31(2), e2157. CrossRef Scholar google search
Ferrarotti I., Ottaviani S., Balderacchi A.M., Barzon V., de Silvestri A., Piloni D., Mariani F., Corsico A.G. (2021) COVID-19 infection in severe alpha 1-antitrypsin deficiency: Looking for a rationale. Respir. Med., 183, 106440. CrossRef Scholar google search
Lechowicz U., Rudzinski S., Jezela-Stanek A., Janciauskiene S., Chorostowska-Wynimko J. (2020) Post-translational modifications of circulating alpha-1-antitrypsin protein. Int. J. Mol. Sci., 21(23), 9187. CrossRef Scholar google search
Bergin D.A., Reeves E.P., Hurley K., Wolfe R., Jameel R., Fitzgerald S., McElvaney N.G. (2014) The circulating proteinase inhibitor α-1 antitrypsin regulates neutrophil degranulation and autoimmunity. Sci. Transl. Med., 6(217), 217ra1. CrossRef Scholar google search
Faust D., Raschke K., Hormann S., Milovic V., Stein J. (2002) Regulation of alpha1-proteinase inhibitor release by proinflammatory cytokines in human intestinal epithelial cells. Clin. Exp. Immunol., 128(2), 279-284. CrossRef Scholar google search
Beltrán-García J., Osca-Verdegal R., Pallardó F.V., Ferreres J., Rodríguez M., Mulet S., Sanchis-Gomar F., Carbonell N., García-Giménez J.L. (2020) Oxidative stress and inflammation in COVID-19-associated sepsis: The potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants (Basel), 9(10), 936. CrossRef Scholar google search
Delgado-Roche L., Mesta F. (2020) Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med. Res., 51(5), 384-387. CrossRef Scholar google search
Ueda M., Mashiba S., Uchida K. (2002) Evaluation of oxidized alpha-1-antitrypsin in blood as an oxidative stress marker using anti-oxidative alpha1-AT monoclonal antibody. Clin. Chim. Acta, 317(1-2), 125-131. CrossRef Scholar google search
Moraga F., Janciauskiene S. (2000) Activation of primary human monocytes by the oxidized form of alpha1-antitrypsin. J. Biol. Chem., 275(11), 7693-7700. CrossRef Scholar google search
Yang P., Sun Z., Krowka M.J. (2008) Alpha1-antitrypsin deficiency carriers, tobacco smoke, chronic obstructive pulmonary disease, and lung cancer risk. Alpha1-antitrypsin deficiency carriers, tobacco smoke, chronic obstructive pulmonary disease, and lung cancer risk. Arch Intern. Med., 168(10), 1097-1103. CrossRef Scholar google search
Zelvyte I., Stevens T., Westin U., Janciauskiene S. (2004) Alpha1-antitrypsin and its C-terminal fragment attenuate effects of degranulated neutrophil-conditioned medium on lung cancer HCC cells, in vitro. Cancer Cell Int., 4(1), 7. CrossRef Scholar google search
Nie J., Pei D. (2004) Rapid inactivation of alpha-1-proteinase inhibitor by neutrophil specific leukolysin/membrane-type matrix metalloproteinase 6. Exp. Cell. Res., 296(2), 145-150. CrossRef Scholar google search
Petropoulou P., Zhang Z., Curtis M.A., Johnson N.W., Hughes F.J., Winyard P.G. (2003) Measurement of both native and inactivated forms of alpha1 proteinase inhibitor in human inflammatory extracellular fluids. J. Clin. Periodontol., 30(9), 795-801. CrossRef Scholar google search
Summers F.A., Morgan P.E., Davies M.J., Hawkins C.L. (2008) Identification of plasma proteins that are susceptible to thiol oxidation by hypochlorous acid and N-chloramines. Chem. Res. Toxicol., 21(9), 1832-1840. CrossRef Scholar google search
Gombás J., Kolev K., Tarján E., Machovich R. (2004) Impaired fibrinolytic potential related to elevated alpha1-proteinase inhibitor levels in patients with pulmonary thromboembolism. Ann. Hematol., 83(12), 759-763. CrossRef Scholar google search
Fregonese L., Stolk J. (2008) Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphanet J. Rare Dis., 3, 16. CrossRef Scholar google search
Sánchez-Domínguez C.N., Buenfil-Lozano J.A., Molina-Guajardo C.A., Borjas-Almaguer O.D., Castillo-Lartigue A., Bustamante-Sáenz A., Martínez-Rodríguez H.G., Villarreal Alarcón M.A., Reyes-López M.A., Ortiz-López R. (2008) Frequency of S and Z alleles for alpha-1-antitrypsin and tumor necrosis factor alpha – 308 promoter polymorphism in Northeastern Mexico. Allergy Asthma Proc., 29, 406-410. CrossRef Scholar google search
Fregonese L., Stolk J., Frants R.R., Veldhuisen B. (2008) Alpha-1 antitrypsin Null mutations and severity of emphysema. Respir. Med., 102(6), 876-884. CrossRef Scholar google search
Averianov A.V., Polivanov A.E. (2007) Alpha1 antitrypsin deficiency and chronic obstructive pulmonary disease. Pulmonologia, No. 3, 103-109. Scholar google search
Khan H., Salman K.A., Ahmed S. (2002) Alpha-1 antitrypsin deficiency in emphysema. J. Assoc. Physicians India, 50, 579-582. Scholar google search
Silverman E.K., Pierce J.A., Province M.A., Rao D.C., Campbell E.J. (1989) Variability of pulmonary function in alpha-1-antitrypsin deficiency: clinical correlates. Ann. Intern. Med., 111(12), 982-991. CrossRef Scholar google search
Conticini E., Frediani B., Caro D. (2020) Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ Pollut., 261, 114465. CrossRef Scholar google search
Martelletti L., Martelletti P. (2020) Air pollution and the novel Covid-19 disease: A putative disease risk factor. SN Compr. Clin. Med., 15, 1-5. CrossRef Scholar google search
Massi G., Cotumaccio R., Auconi P. (1982) Alpha-1-antitrypsin (alpha 1AT) phenotypes and PiM subtypes in Italy. Evidence of considerable geographic variability. Hum. Genet., 61(1), 76-77. CrossRef Scholar google search
Alberca R.W., Lima J.C., de Oliveira E.A., Gozzi-Silva S.C., Ramos Y.Á.L., de Souza Andrade M.M., Beserra D.R., de Mendonça Oliveira L., Calvielli Castelo Branco A.C., Pietrobon A.J., Pereira N.Z., Teixeira F.M.E., Fernandes I.G., Duarte A.J.S., Benard G., Sato M.N. (2021) COVID-19 disease course in former smokers, smokers and COPD patients. Front. Physiol., 11, 637627. CrossRef Scholar google search
Tannous T., Rosso C., Keating M. (2021) Heterozygous alpha-1 antitrypsin deficiency causing pulmonary emboli and pulmonary bullae. Cureus, 13(4), e14759. CrossRef Scholar google search
Bukreeva E.B., Akbasheva O.E., Sukhanova G.A., Dementieva E.A., Nestervovich S.V., Melnik T.G., Gudkova L.V., Ivanchuk I.I. (2002) The activity of elastase and its inhibitors in different etiologies of exacerbation in patients with chronic obstructive bronchitis. Bulletin of Experimental Biology and Medicine, No. 1, 55-58. Scholar google search
Gereng E.A., Sukhodolo I.V., Pleshko R.I., Ogorodova L.M., Akbasheva O.E., Bukreeva E.B., Dzyuman A.N., Kobyakova O.S., Selivanova P.A., Kremis I.S. (2009) Morphological and biochemical markers of inflammatory reactions in the bronchial mucosa in severe bronchial asthma and chronic obstructive pulmonary disease. Bulletin of Siberian Medicine, 8(3), 11-16. Scholar google search
Attaway A.A., Zein J., Hatipoğlu U.S. (2020) SARS-CoV-2 infection in the COPD population is associated with increased healthcare utilization: An analysis of Cleveland clinic's COVID-19 registry. EClinicalMedicine, 26, 100515. CrossRef Scholar google search
Sen P., Majumdar U., Zein J., Hatipoğlu U., Attaway A.H. (2021) Inhaled corticosteroids do not adversely impact outcomes in COVID-19 positive patients with COPD: An analysis of Cleveland clinic's COVID-19 registry. PLoS One, 16(6), e0252576. CrossRef Scholar google search
Watson A., Öberg L., Angermann B., Spalluto C.M., Hühn M., Burke H., Cellura D., Freeman A., Muthas D., Etal D., Belfield G., Karlsson F., Nordström K., Ostridge K., Staples K.J., Wilkinson T., MICA II Studygroup (2021) Dysregulation of COVID-19 related gene expression in the COPD lung. Respir. Res., 22(1), 164. CrossRef Scholar google search
Ren Y., He Q.Y., Fan J., Jones B., Zhou Y., Xie Y., Cheung C.Y., Wu A., Chiu J.F., Peiris J.S., Tam P.K. (2004) The use of proteomics in the discovery of serum biomarkers from patients with severe acute respiratory syndrome. Proteomics, 4(11), 3477-3484. CrossRef Scholar google search
Wang C., Zhao P., Sun S., Teckman J., Balch W.E. (2020) Leveraging population genomics for individualized correction of the hallmarks of alpha-1 antitrypsin deficiency. Chronic. Obstr. Pulm. Dis., 7(3), 224-246. CrossRef Scholar google search
Nita I., Hollander C., Westin U., Janciauskiene S.M. (2005) Prolastin, a pharmaceutical preparation of purified human alpha1-antitrypsin, blocks endotoxin-mediated cytokine release. Respir. Res., 6(1), 12. CrossRef Scholar google search
De B., Heguy A., Leopold P.L., Wasif N., Korst R.J., Hackett N.R., Crystal R.G. (2004) Intrapleural administration of a serotype 5 adeno-associated virus coding for alpha1-antitrypsin mediates persistent, high lung and serum levels of alpha1-antitrypsin. Mol. Ther., 10(6), 1003-1010. CrossRef Scholar google search
Brand P., Beckmann H., Maas Enriquez M., Meyer T., Müllinger B., Sommerer K., Weber N., Weuthen T., Scheuch G. (2003) Peripheral deposition of alpha1-protease inhibitor using commercial inhalation devices. Eur. Respir. J., 22(2), 263-267. CrossRef Scholar google search
Molano R.D., Pileggi A., Song S., Zahr E., San Jose S., Molina J., Fort A., Wasserfall C., Ricordi C., Atkinson M.A., Inverardi L. (2008) Prolonged islet allograft survival by alpha-1 antitrypsin: the role of humoral immunity. Transplant. Proc., 40(2), 455-456. CrossRef Scholar google search
Tonelli A.R., Brantly M.L. (2010) Augmentation therapy in alpha-1 antitrypsin deficiency: advances and controversies. Ther. Adv. Respir. Dis., 4(5), 289-312. CrossRef Scholar google search
Santana M.V.S., Silva-Jr F.P. (2021) De novo design and bioactivity prediction of SARS-CoV-2 main protease inhibitors using recurrent neural network-based transfer learning. BMC Chem., 15(1), 8. CrossRef Scholar google search
McEvoy N.L., Clarke J.L., McElvaney O.J., McElvaney O.F., Boland F., Hyland D., Geoghegan P., Donnelly K., Frie O., Cullen A., Collins A.M., Fraughen D., Martin-Loeches I., Hennessy M., Laffey J.G., McElvaney N.G., Curley G.F. (2021) A randomised, double-blind, placebo-controlled, pilot trial of intravenous plasma purified alpha-1 antitrypsin for SARS-CoV-2-induced Acute Respiratory Distress Syndrome: A structured summary of a study protocol for a randomised, controlled trial. Trials, 22(1), 288. CrossRef Scholar google search
Kiseleva A.V., Klimushina M.V., Sotnikova E.A., Divashuk M.G., Ershova A.I., Skirko O.P., Kurilova O.V., Zharikova A.A., Khlebus E.Yu., Efimova I.A., Pokrovskaya M.S., Slominsky P.A., Shalnova S.A., Meshkov A.N., Drapkina O.M. (2020) A data-driven approach to carrier screening for common recessive diseases. J. Pers. Med., 10(3), 140. CrossRef Scholar google search
Wichmann D., Sperhake J.P., Lütgehetmann M., Steurer S., Edler C., Heinemann A., Heinrich F., Mushumba H., Kniep I., Schröder A.S., Burdelski C., de Heer G., Nierhaus A., Frings D., Pfefferle S., Becker H., Bredereke-Wiedling H., de Weerth A., Paschen H.R., Sheikhzadeh-Eggers S., Stang A., Schmiedel S., Bokemeyer C., Addo M.M., Aepfelbacher M., Püschel K., Kluge S. (2020) Autopsy findings and venous thromboembolism in patients with COVID-19: A prospective cohort study. Ann. Intern. Med., 173(4), 268-277. CrossRef Scholar google search
Guéant J.L., Guéant-Rodriguez R.M., Fromonot J., Oussalah A., Louis H., Chery C., Gette M., Gleye S., Callet J., Raso J., Blanchecotte F., Lacolley P., Guieu R., Regnault V. (2021) Elastase and exacerbation of neutrophil innate immunity are involved in multi-visceral manifestations of COVID-19. Allergy, 76(6), 1846-1858. CrossRef Scholar google search
Sahebnasagh A., Saghafi F., Safdari M., Khataminia M., Sadremomtaz A., Talaei Z., Rezai Ghaleno H., Bagheri M., Habtemariam S., Avan R. (2020) Neutrophil elastase inhibitor (sivelestat) may be a promising therapeutic option for management of acute lung injury/acute respiratory distress syndrome or disseminated intravascular coagulation in COVID-19. J. Clin. Pharm. Ther., 45(6), 1515-1519. CrossRef Scholar google search
Thierry A.R. (2020) Anti-protease treatments targeting plasmin(ogen) and neutrophil elastase may be beneficial in fighting COVID-19. Physiol. Rev., 100(4), 1597-1598. CrossRef Scholar google search
Serban K.A., Petrache I. (2016) Alpha-1 antitrypsin and lung cell apoptosis. Ann Am. Thorac. Soc., 13, Suppl 2, S146-S149. CrossRef Scholar google search