1. Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia 2. Institute of Biomedical Chemistry, Moscow, Russia
Interactions of cytochrome P450 2C9 (CYP2C9) were studied with the antitumor drug abiraterone and its pharmacologically active metabolite D4A, promising as an agent for prostate cancer treatment. It was shown by absorption spectroscopy, that both investigated compounds induced spectral changes of CYP2C9, indicating interactions of the pyridine nitrogen atom with the heme iron ion of the active site of the enzyme, but interactions of the ligands with the enzyme could be mediated by a water molecule bound to the heme iron ion. Based on the spectral changes, the values of dissociation constants (KS) for complexes of abiraterone and D4A with CYP2C9 were calculated as 1.73±0.14 μM and 3.95±0.16 μM. Both compounds inhibited O-demethylase activity of CYP2C9 towards its substrate. At 100 μM concentration of naproxen the concentrations of abiraterone, D4A and sulfaphenazole inhibiting CYP2C9 activity by 50% (IC₅₀) were determined as 13.9 μM, 40 μM and 41 μM, respectively. The obtained results can be used for prognosis of drug-drug interactions at CYP2C9 level during administration of abiraterone or D4A as an antitumor agent for prostate cancer treatment in complex pharmacotherapy.
Masamrekh R.A., Kuzikov A.V., Filippova T.A., Sherbakov K.A., Veselovsky A.V., Shumyantseva V.V. (2022) The interactions of abiraterone and its pharmacologically active metabolite D4A with cytochrome P450 2C9 (CYP2C9). Biomeditsinskaya Khimiya, 68(3), 201-211.
Masamrekh R.A. et al. The interactions of abiraterone and its pharmacologically active metabolite D4A with cytochrome P450 2C9 (CYP2C9) // Biomeditsinskaya Khimiya. - 2022. - V. 68. -N 3. - P. 201-211.
Masamrekh R.A. et al., "The interactions of abiraterone and its pharmacologically active metabolite D4A with cytochrome P450 2C9 (CYP2C9)." Biomeditsinskaya Khimiya 68.3 (2022): 201-211.
Masamrekh, R. A., Kuzikov, A. V., Filippova, T. A., Sherbakov, K. A., Veselovsky, A. V., Shumyantseva, V. V. (2022). The interactions of abiraterone and its pharmacologically active metabolite D4A with cytochrome P450 2C9 (CYP2C9). Biomeditsinskaya Khimiya, 68(3), 201-211.
Li Z., Bishop A.C., Alyamani M., Garcia J.A., Dreicer R., Bunch D., Liu J., Upadhyay S.K., Auchus R.J., Sharifi N. (2015) Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature, 523, 347-351. CrossRef Scholar google search
Yoshimoto F.K., Auchus R.J. (2015) The diverse chemistry of cytochrome P450 17A1 (P450c17, CYP17A1). J. Steroid Biochem. Mol. Biol., 151, 52-65. CrossRef Scholar google search
Attard G., Reid A.H., Auchus R.J., Hughes B.A., Cassidy A.M., Thompson E., Oommen N.B., Folkerd E., Dowsett M., Arlt W., de Bono J.S. (2012) Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. J. Clin. Endocrinol. Metab., 97(2), 507-516. CrossRef Scholar google search
Li Z., Alyamani M., Li J., Rogacki K., Abazeed M., Upadhyay S.K., Balk S.P., Taplin M.E., Auchus R.J., Sharifi N. (2016) Redirecting abiraterone metabolism to finetune prostate cancer anti-androgen therapy. Nature, 533(7604), 547-551. CrossRef Scholar google search
Salvador J.A., Pinto R.M., Silvestre S.M. (2013) Steroidal 5α-reductase and 17αhydroxylase/17,20-lyase (CYP17) inhibitors useful in the treatment of prostatic diseases. J. Steroid Biochem. Mol Biol., 137, 199-222. CrossRef Scholar google search
Bonnet C., Boudou-Rouquette P., Azoulay-Rutman E., Huillard O., Golmard J.-L., Carton E., Noé G., Vidal M., Orvoen G., Wakilian A.C., Villeminey C., Blanchet B., Alexandre J., Goldwasser F., Thomas-Schoemann A. (2017) Potential drug-drug interactions with abiraterone in metastatic castration-resistant prostate cancer patients: A prevalence study in France. Cancer Chemother. Pharmacol., 79, 1051-1055. CrossRef Scholar google search
del Re M., Fogli S., Derosa L., Massari F., de Souza P., Crucitta S., Bracarda S., Santini D., Danesi R. (2017) The role of drug-drug interactions in prostate cancer treatment: Focus on abiraterone acetate/prednisone and enzalutamide. Cancer Treat. Rev., 55, 71-82. CrossRef Scholar google search
Masamrekh R.A., Kuzikov A.V., Haurychenka Y.I., Shcherbakov K.A., Veselovsky A.V., Filimonov D.A., Dmitriev A.V., Zavialova M.G., Gilep A.A., Shkel T.V., Strushkevich N.V., Usanov S.A., Archakov A.I., Shumyantseva V.V. (2020) In vitro interactions of abiraterone, erythromycin, and CYP3A4: implications for drug-drug interactions. Fundam. Clin. Pharmacol., 34(1), 120-130. CrossRef Scholar google search
Friedlander T.W., Ryan C.J. (2010) Adrenal androgen synthesis inhibitor therapies in castration-resistant prostate cancer. In: Drug Management of Prostate Cancer (Figg W., Chau C., Small E., eds.), Springer, New York, NY, pp. 91-100. CrossRef Scholar google search
Malikova J., Brixius-Anderko S., Udhane S.S., Parween S., Dick B., Bernhardt R., Pandey A.V. (2017) CYP17A1 inhibitor abiraterone, an anti-prostate cancer drug, also inhibits the 21-hydroxylase activity of CYP21A2. J. Steroid Biochem. Mol. Biol., 174, 192-200. CrossRef Scholar google search
Masamrekh R., Filippova T., Haurychenka Y., Shcherbakov K., Veselovsky A., Strushkevich N., Shkel T., Gilep A., Usanov S., Shumyantseva V., Kuzikov A. (2020) Estimation of the inhibiting impact of abiraterone D4A metabolite on human steroid 21-monooxygenase (CYP21A2). Steroids, 154, 108528. CrossRef Scholar google search
Garrido M., Peng H.M., Yoshimoto F.K., Upadhyay S.K., Bratoeff E., Auchus R.J. (2014) A-ring modified steroidal azoles retaining similar potent and slowly reversible CYP17A1 inhibition as abiraterone. J. Steroid Biochem. Mol. Biol., 143, 1-10. CrossRef Scholar google search
Masamrekh R.A., Filippova T.A., Haurychenka Y.I., Sherbakov K.A., Veselovsky A.V., Shumyantseva V.V., Kuzikov A.V. (2020) The interactions of a number of steroid-metabolizing cytochromes P450 with abiraterone D4A metabolite: spectral analysis and molecular docking. Steroids, 162, 108693. CrossRef Scholar google search
Louet M., Labbé C.M., Fagnen C., Aono C.M., Homem-de-Mello P., Villoutreix B.O., Miteva M.A. (2018) Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30. PLoS One, 13(5), e0197249. CrossRef Scholar google search
Daly A.K., Rettie A.E., Fowler D.M., Miners J.O. (2017) Pharmacogenomics of CYP2C9: functional and clinical considerations. J. Pers. Med., 8(1), 1. CrossRef Scholar google search
Hoy S.M. (2013) Abiraterone acetate: A review of its use in patients with metastatic castration-resistant prostate cancer. Drugs, 73(18), 2077-2091. CrossRef Scholar google search
Haidukevich I.V., Sushko T.A., Tumilovich A.M., Grabovec I.P., Usanov S.A., Gilep A.A. (2018) Different inhibitory effects of azole-containing drugs and pesticides on CYP2C9 polymorphic forms: An in vitro study. Toxicol. In Vitro, 50, 249-256. CrossRef Scholar google search
Omura T., Sato R. (1964) The carbon monoxide-binding pigment of liver microsomes. Ii. Solubilization, purification, and properties. J. Biol. Chem., 239, 2379-2385. CrossRef Scholar google search
Swain N.A., Batchelor D., Beaudoin S., Bechle B.M., Bradley P.A., Brown A.D., Brown B., Butcher K.J., Butt R.P., Chapman M.L., Denton S., Ellis D., Galan S.R.G., Gaulier S.M., Greener B.S., de Groot M.J., Glossop M.S., Gurrell I.K., Hannam J., Johnson M.S., Lin Z., Markworth C.J., Marron B.E., Millan D.S., Nakagawa S., Pike A., Printzenhoff D., Rawson D.J., Ransley S.J., Reister S.M., Sasaki K., Storer R.I., Stupple P.A., West C.W. (2017) Discovery of clinical candidate 4-[2-(5-Amino-1H-pyrazol- 4-yl)-4-chlorophenoxy]-5-chloro-2-fluoro-N-1,3-thiazol-4- ylbenzenesulfonamide (PF-05089771): Design and optimization of diaryl ether aryl sulfonamides as selective inhibitors of NaV1.7. J. Med. Chem., 60(16), 7029-7042. CrossRef Scholar google search
Trott O., Olson A.J. (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 31(2), 455-461. CrossRef Scholar google search
Adasme M.F., Linnemann K.L., Bolz S.N., Kaiser F., Salentin S., Haupt V.J., Schroeder M. (2021) PLIP 2021: Expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 49(W1), W530-W534. CrossRef Scholar google search
Kuzikov A.V., Filippova T.A., Masamrekh R.A., Shumyantseva V.V. (2022) Electrochemical determination of (S)-7-hydroxywarfarin for analysis of CYP2C9 catalytic activity. J. Electroanalytical Chemistry, 904, 115937. CrossRef Scholar google search
Shumyantseva V.V., Bulko T.V., Koroleva P.I., Shikh E.V., Makhova A.A., Kisel M.S., Haidukevich I.V., Gilep A.A. (2022) Human cytochrome P450 2C9 and its polymorphic modifications: Electroanalysis, catalytic properties, and approaches to the regulation of enzymatic activity. Processes, 10(2), 383. CrossRef Scholar google search
Nash T. (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J., 55(3), 416-421. CrossRef Scholar google search
Luthra A., Denisov I.G., Sligar S.G. (2011) Spectroscopic features of cytochrome P450 reaction intermediates. Arch. Biochem. Biophys., 507(1), 26-35. CrossRef Scholar google search
Denisov I.G., Frank D.J., Sligar S.G. (2009) Cooperative properties of cytochromes P450. Pharmacol. Ther., 124(2), 151-167. CrossRef Scholar google search
Bourrié M., Meunier V., Berger Y., Fabre G. (1996) Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J. Pharmacol. Exp. Ther., 277(1), 321-332. Scholar google search
Miners J.O., Coulter S., Tukey R.H., Veronese M.E., Birkett D.J. (1996) Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochem. Pharmacol., 51(8), 1003-1008. CrossRef Scholar google search
van Booven D., Marsh S., McLeod H., Carrillo M.W., Sangkuhl K., Klein T.E., Altman R.B. (2010) Cytochrome P450 2C9-CYP2C9. Pharmacogenet. Genomics, 20(4), 277-281. CrossRef Scholar google search