The aim of this work is to study of ozone effect on blood oxygen-dependent processes under hypercapnia conditions. The studied blood samples are pretreated with a hypercapnic gas mixture followed by the addition of ozonized isotonic sodium chloride solution (with an ozone concentration of 6 mg/l), as well as gaseous transmitters donors, nitroglycerin and sodium hydrosulfide. It has been established that hypercapnia enhanced the ozone effect on the blood oxygen transport function and was characterized by the oxyhemoglobin dissociation curve shift to the right, also increased hydrogen sulfide synthesis and absence of changes in the nitrates/nitrites concentration. Under these conditions nitroglycerin and sodium hydrosulfide did not change the parameters of the blood gas transport function, but increased the level of nitrate/nitrite and hydrogen sulfide. Preliminary hypercapnia does not eliminate the activating effect of ozone on the free radical oxidation processes, and the addition of the applied gaseous transmitter donors does not contribute to the regulation of the studied parameters.
Zinchuk V.V., Biletskaya E.S., Gulyai I.E (2022) Features of ozone effect on the oxygen-dependent blood processes under hypercapnia conditions. Biomeditsinskaya Khimiya, 68(3), 212-217.
Zinchuk V.V. et al. Features of ozone effect on the oxygen-dependent blood processes under hypercapnia conditions // Biomeditsinskaya Khimiya. - 2022. - V. 68. -N 3. - P. 212-217.
Zinchuk V.V. et al., "Features of ozone effect on the oxygen-dependent blood processes under hypercapnia conditions." Biomeditsinskaya Khimiya 68.3 (2022): 212-217.
Zinchuk, V. V., Biletskaya, E. S., Gulyai, I. E (2022). Features of ozone effect on the oxygen-dependent blood processes under hypercapnia conditions. Biomeditsinskaya Khimiya, 68(3), 212-217.
References
Izadi M., Cegolon L., Javanbakht M., Sarafzadeh A., Abolghasemi H., Alishiri G., Zhao S., Einollahi B., Kashaki M., Jonaidi-Jafari N., Asadi M., Jafari R., Fathi S., Nikoueinejad H., Ebrahimi M., Imanizadeh S., Ghazale A.H. (2021) Ozone therapy for the treatment of COVID-19 pneumonia: A scoping review. Int. Immunopharmacol., 92, 107307. CrossRef Scholar google search
Hernández A., Viñals M., Isidoro T., Vilás F. (2020) Potential role of oxygen-ozone therapy in treatment of COVID-19 pneumonia. Am. J. Case Rep., 21, e925849. CrossRef Scholar google search
Zinchuk V.V., Biletskaya E.S. (2020) Different dosage effects of ozone on oxygen transport in blood during in vitro experiments. Biophysics. 65(5), 915-919. CrossRef Scholar google search
Zinchuk V.V., Firago M.E. (2017) Participation of melatonin in regulation of blood oxygen-transport function in oxidative stress induced by injection of lipopolisaccharide. Biomeditsinskaya Khimiya, 63(6), 520-526. CrossRef Scholar google search
Stepuro T.L., Zinchuk V.V. (2013) Nitric oxide modification of hemoglobin oxygen affinity in different conditions of oxygen regime. Russ. J. Physiol., 99(1), 111-119. Scholar google search
Böning D., Littschwager A., Hütler M., Beneke R., Staab D. (2014) Hemoglobin oxygen affinity in patients with cystic fibrosis. PLoS One, 9(2), e97932. CrossRef Scholar google search
Liu T., Mukosera G.T., Blood A.B. (2020) The role of gasotransmitters in neonatal physiology. Nitric Oxide, 95, 29-44. CrossRef Scholar google search
Gavrilov V.B., Mishkorudnaya M.I. (1983) Spectrophotometric determination of the content of lipid hydroperoxides in blood plasma. Laboratornoe Delo, No. 3, 33-36. Scholar google search
Kamyshnikov V.S. (2002) Handbook of clinical and biochemical laboratory diagnostics, Belarus, Minsk 465 p. Scholar google search
Taylor S.L., Lamden M.P., Tappel A.L. (1976) Sensitive fluorometric method for tissue tocopherol analysis. Lipids, 11(7), 530-538. CrossRef Scholar google search
Bryan N.S., Grisham M.B. (2007) Methods to detect nitric oxide and its metabolites in biological samples. Free Radic. Biol. Med., 43(5), 645-657. CrossRef Scholar google search
Norris E.J., Culberson C.R., Narasimhan S., Clemens M.G. (2011) The liver as central regulator of hydrogen sulfide. Shock, 36(3), 242-250. CrossRef Scholar google search
Gutiérrez-Jiménez E., Angleys H., Rasmussen P.M., Mikkelsen I.K., Mouridsen K., Østergaard L. (2018) The effects of hypercapnia on cortical capillary transit time heterogeneity (CTH) in anesthetized mice. J. Cerebral Blood Flow Metabolism, 38(2), 290-303. CrossRef Scholar google search
Jin Z., Zhang Q., Wondimu E., Verma R., Fu M., Shuang T., Arif H.M., Wu L., Wang R. (2020) H2S-stimulated bioenergetics in chicken erythrocytes and the underlying mechanism. Am. J. Physiol.: Regulatory, Integrative and Comparative Physiology, 319(1), 69-78. CrossRef Scholar google search
Tsikas D., Sutmöller K., Maassen M., Nacke M., Böhmer A., Mitschke A., Konrad H., Starke H., Hummler H., Maassen N. (2013) Even and carbon dioxide independent distribution of nitrite between plasma and erythrocytes of healthy humans at rest. Nitric Oxide, 31, 31-37. CrossRef Scholar google search
Lo Faro M.L., Fox B., Whatmore J.L., Winyard P.G., Whiteman M. (2014) Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide, 41, 38-47. CrossRef Scholar google search
Belykh I.A. (2007) The use of low doses of ozone on hypertonic lysis of erythrocytes. Problems of Cryobiology, 17(3), 237-242. Scholar google search
Akbudak I.H., Kucukatay V., Kilic-Erkek O., Ozdemir Y., Bor-Kucukatay M. (2019) Investigation of the effects of major ozone autohemotherapy application on erythrocyte deformability and aggregation. Clin. Hemorheol. Microcirc., 71(3), 365-372. CrossRef Scholar google search
Orlov Yu.P. (2008) Intravascular hemolysis of erythrocytes in the development of organ dysfunctions in critical conditions. General Resuscitation, 4(2), 88-93. CrossRef Scholar google search