Isatin (indole-2,3-dione) is an endogenous regulator exhibiting various effects mediated by numerous isatin-binding proteins localized in different compartments of cells of the brain and peripheral tissues. It attenuates manifestations of experimental parkinsonism induced by administration of the MPTP neurotoxin and reduces the movement disorders characteristic of this disease. The molecular mechanisms of the neuroprotective action of isatin include its direct interaction with proteasomes, intracellular supramolecular complexes responsible for the targeted elimination of proteins. Incubation of fractions of 26S and 20S rabbit brain proteasomes, containing the whole spectrum of proteasomal subunits, as well as a number of proteasome-associated proteins, with isatin (100 μM) had a significant impact on the profile of released proteins. In the case of 26S proteasomes containing, in addition to the core part (20S proteasome), 19S regulatory subparticles, incubation with isatin resulted in a more than threefold increase in the number of dissociated proteins. In the case of 20S proteasomes (containing only the 20S core particle), incubation with isatin resulted in a significant decrease in the number of dissociated proteins compared to the control. Our results indicate an important role of the regulatory 19S subunit components in the formation of the proteasome subproteome and the sensitivity of these supramolecular complexes to isatin.
Buneeva O.A., Kopylov A.T., Medvedev A.E. (2022) The key role of the regulatory 19S subunit in changes in the brain proteasome subproteome induced by the neuroprotector isatin. Biomeditsinskaya Khimiya, 68(4), 250-262.
Buneeva O.A. et al. The key role of the regulatory 19S subunit in changes in the brain proteasome subproteome induced by the neuroprotector isatin // Biomeditsinskaya Khimiya. - 2022. - V. 68. -N 4. - P. 250-262.
Buneeva O.A. et al., "The key role of the regulatory 19S subunit in changes in the brain proteasome subproteome induced by the neuroprotector isatin." Biomeditsinskaya Khimiya 68.4 (2022): 250-262.
Buneeva, O. A., Kopylov, A. T., Medvedev, A. E. (2022). The key role of the regulatory 19S subunit in changes in the brain proteasome subproteome induced by the neuroprotector isatin. Biomeditsinskaya Khimiya, 68(4), 250-262.
References
Medvedev A.E., Clow A., Sandler M., Glover V. (1996) Isatin − a link between natriuretic peptides and monoamines? Biochem. Pharmacol., 52, 385-391. CrossRef Scholar google search
Medvedev A., Igosheva N., Crumeyrolle-Arias M., Glover V. (2005) Isatin: Role in stress and anxiety. Stress, 8, 175-183. CrossRef Scholar google search
Medvedev A., Buneeva O., Glover V. (2007) Biological targets for isatin and its analogues: implications for therapy. Biologics, 1, 151-162. Scholar google search
Medvedev A., Buneeva O., Gnedenko O., Ershov P., Ivanov A. (2018) Isatin, an endogenous nonpeptide biofactor: A review of its molecular targets, mechanisms of actions, and their biomedical implications. Biofactors, 44(2), 95-108. CrossRef Scholar google search
Medvedev A., Kopylov A., Buneeva O., Kurbatov L., Tikhonova O., Ivanov A., Zgoda V.A. (2020) Neuroprotective dose of isatin causes multilevel changes involving the brain proteome: Prospects for further research. Int. J. Mol. Sci., 21(11), 4187. CrossRef Scholar google search
Medvedev A., Buneeva O. (2022) Tryptophan metabolites as mediators of microbiota-gut-brain communication: Focus on isatin. A mini review. Front. Behav. Neurosci., 16, 922274. CrossRef Scholar google search
Buneeva O., Kopylov A., Kapitsa I., Ivanova E., Zgoda V., Medvedev A. (2018) The effect of neurotoxin MPTP and neuroprotector isatin on the profile of ubiquitinated brain mitochondrial proteins. Cells, 7(8), 91. CrossRef Scholar google search
Medvedev A.E., Buneeva O.A., Kopylov A.T., Tikhonova O.V., Medvedeva M.V., Nerobkova L.N., Kapitsa I.G., Zgoda V.G. (2017) Brain mitochondrial subproteome of RPN10-binding proteins and its changes induced by the neurotoxin MPTP and the neuroprotector isatin. Biochemistry (Moscow), 82(3), 330-339. CrossRef Scholar google search
Buneeva O.A., Kopylov A.T., Gnedenko O.V., Medvedeva M.V., Kapitsa I.G., Ivanova E.A., Ivanov A.S., Medvedev A.E. (2021) Changes in the mitochondrial subproteome of mouse brain RPN13-binding proteins induced by the neurotoxin MPTP and the neuroprotector isatin. Biomeditsinskya Khimiya, 67(1), 51-65. CrossRef Scholar google search
Schwartz A.L., Ciechanover A. (2009) Targeting proteins for destruction by the ubiquitin system: Implications for human pathobiology. Annu. Rev. Pharmacol. Toxicol., 49, 73-96. CrossRef Scholar google search
Goldberg A.L. (2003) Protein degradation and protection against misfolded or damaged proteins. Nature, 426, 895-899. CrossRef Scholar google search
Finley D., Chen X., Walters K.J. (2016) Gates, channels, and switches: Elements of the proteasome machine. Trends Biochem. Sci., 41, 77-93. CrossRef Scholar google search
Tanaka K. (2009) The proteasome: Overview of structure and functions. Proc. Jpn. Acad., Ser. B, 85, 12-36. CrossRef Scholar google search
Kish-Trier E., Hill C.P. (2013) Structural biology of the proteasome. Annu. Rev. Biophys., 42, 29-49. CrossRef Scholar google search
Wolf D.H., Hilt W. (2004) The proteasome: A proteolytic nanomachine of cell regulation and waste disposal. Biochim. Biophys. Acta, 1695, 19-31. CrossRef Scholar google search
Shi Y., Chen X., Elsasser S., Stocks B.B., Tian G., Lee B.-H., Shi Y., Zhang N., de Poot S.A.H., Tuebing F., Su S., Vannoy J., Tarasov S.G., Engen J.R., Finley D., Walters K.J. (2016) Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science, 351(6275), aad9421. CrossRef Scholar google search
Deveraux Q., Ustrell V., Pickart C., Rechsteiner M. (1994) A 26S protease subunit that binds ubiquitin conjugates. J. Biol. Chem., 269, 7059-7061. CrossRef Scholar google search
Husnjak K., Elsasser S., Zhang N., Chen X., Randles L., Shi Y., Hofmann K., Walters K., Finley D., Dikic I. (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature, 453(7194), 481-488. CrossRef Scholar google search
Sánchez-Lanzas R., Castaño J.G. (2014) Proteins directly interacting with mammalian 20S proteasomal subunits and ubiquitin-independent proteasomal degradation. Biomolecules, 4(4), 1140-1154. CrossRef Scholar google search
Buneeva O.A., Medvedev A.E. (2018) Ubiquitin-independent protein degradation in proteasomes. Biomeditsinskya Khimiya, 64(2), 134-148. CrossRef Scholar google search
Besche H.C., Haas W., Gygi S.P., Goldberg A.L. (2013) Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry, 48(11), 2538-2549. CrossRef Scholar google search
Wang X., Huang L. (2008) Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol. Cell Proteomics, 7(1), 46-57. CrossRef Scholar google search
Artamonova T.O., Khodorkovskii M.A., Tsimokha A.S. (2014) Mass spectrometric analysis of affinity-purified proteasomes from the human myelogenous leukemia K562 cell line. Bioorg. Khim., 40(6), 720-734. CrossRef Scholar google search
Zaikova Yu.Ya., Kulichkova V.A., Ermolaeva Yu.B., Bottrill A., Barlev N.A., Tsimokha A.S. (2013) Characterization of extracellular proteasomes and its interacting proteins by iTRAQ mass spectrometry. Tsitologiia, 55(2), 111-122. Scholar google search
Buneeva O., Kopylov A., Kaloshina S., Zgoda V., Medvedev A. (2021) 20S and 26S proteasome-binding proteins of the rabbit brain: A proteomic dataset. Data Brief, 38, 107276. CrossRef Scholar google search
Buneeva O.A., Kopylov A.T., Zgoda V.G., Gnedenko O.V., Kaloshina S.A., Medvedeva M.V., Ivanov A.S., Medvedev A.E. (2022) Comparative analysis of proteins associated with 26S and 20S proteasomes isolated from rabbit brain and liver. Biomeditsinskya Khimiya, 68(1), 18-31. CrossRef Scholar google search
Sharova N.P., Astahova T.M., Erohov P.A., Lyupina Yu.V., Dmitrieva (Abaturova) S.B., Karpova Ya.D. (2011) Sposob razdeleniya pulov 26S- i 20S-proteasom iz tsitoplazmaticheskoj fraktsii kletok. Patent na izobretenie № 2427623 ot 27.08. 2011 g. RF. https://findpatent.ru/patent/242/2427623.html. Scholar google search
Supek F., Bošnjak M., Škunca N., Šmuc T. (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One, 6, e21800. CrossRef Scholar google search
Pesquita C., Faria D., Falcão A.O., Lord P., Couto F.M. (2009) Semantic similarity in biomedical ontologies. PLoS Comput. Biol., 5, e1000443. CrossRef Scholar google search