Experimental alloxan diabetes in rats causes an increase in the activity of liver succinate dehydrogenase (SDH) without changes in its isozyme composition. The observed increase in the catalytic activity of SDH clearly correlates with the intensification of transcription of the genes encoding catalytic dimer of SDH. Analysis of the methyl status of the promoters of the genes, encoding the catalytic dimer of SDH in rats under normal and experimental conditions did not reveal any dependence on the level of their expression. The obtained results of bisulfite sequencing indicate a passive role of the epigenetic mechanism of regulation of SDH gene expression in the development of alloxan diabetes. The transcription factor CREB, responsible for of gluconeogenesis in diabetes, may play an important role in the control of the transcriptional activity of the sdha and sdhb genes.
Eprintsev A.T., Fedorin D.N., Bakarev M.Yu. (2022) Molecular and biochemical studies of succinate dehydrogenase in rat liver under conditions of alloxan diabetes. Biomeditsinskaya Khimiya, 68(4), 272-278.
Eprintsev A.T. et al. Molecular and biochemical studies of succinate dehydrogenase in rat liver under conditions of alloxan diabetes // Biomeditsinskaya Khimiya. - 2022. - V. 68. -N 4. - P. 272-278.
Eprintsev A.T. et al., "Molecular and biochemical studies of succinate dehydrogenase in rat liver under conditions of alloxan diabetes." Biomeditsinskaya Khimiya 68.4 (2022): 272-278.
Eprintsev, A. T., Fedorin, D. N., Bakarev, M. Yu. (2022). Molecular and biochemical studies of succinate dehydrogenase in rat liver under conditions of alloxan diabetes. Biomeditsinskaya Khimiya, 68(4), 272-278.
References
Piters-Harmel E., Matur R. (2008) Diabetes Mellitus: Diagnosis and Treatment. Practica, Moscow, 496 p. Scholar google search
Radenković M., Stojanović M., Prostran M. (2016) Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. J. Pharmacol. Toxicol. Methods, 78, 13-31. CrossRef Scholar google search
Eprincev A.T., Popov V.N., Shevchenko M.Yu. (2007) Glyoxylate cycle: A universal mechanism for adaptation, Akademkniga, Moscow, 231 p. Scholar google search
Iverson T.M. (2012) Catalytic mechanisms of complex II enzymes: A structural perspective. Biochim Biophys Acta, 1827(5), 648-657. CrossRef Scholar google search
Mahmud Ali S., Eprincev A.T. (2012) Physicochemical and catalytic properties of the succinate dehydrogenase from rat liver (Rattus rattus L.). Vestnik VGU. Seriya: Himiya. Biologiya. Farmaciya, 2, 144-147. Scholar google search
Kozlov V.A. (2008) Methylation of cellular DNA and pathology of the organism. Medicinskaya immunologiya, 10(4-5), 307-318. CrossRef Scholar google search
Förster A.M. (2010) Analysis of DNA methylation in plants by bisulfite sequencing. Methods Mol. Biol., 631, 1-11. CrossRef Scholar google search
Lenzen S. (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 51(2), 216-226. CrossRef Scholar google search
Cimen H., Han M., Yang Y. (2010) Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry, 49(2), 304-311. CrossRef Scholar google search
Pollock N.L., Rai M., Simond K.S., Hesketh S.J., Teo A.C.K., Parmar M., Sridhar P., Collins R., Lee S.C., Stroud Z.N., Bakker S.E., Muench S.P., Barton C.H., Hurlbut G., Roper D.I., Smith C.J.I., Knowles T.J., Spickett C.M., East J.M., Postis V., Dafforn T.R. (2019) SMA-PAGE: A new method to examine complexes of membrane proteins using SMALP nano-encapsulation and native gel electrophoresis. Biochim. Biophys. Acta Biomembr., 1861(8), 1437-1445. CrossRef Scholar google search
Selivanova N.V., Bakarev M.Yu., Eprincev A.T. (2021) Isolation and identificationof succinate dehydrogenase genes by membrane methods. Sorbcionnye i hromatograficheskie processy, 21(4), 584-590. CrossRef Scholar google search
Bakarev M.Yu., Bystrova D.S., Suzdalova K.I., Fedorin D.N. (2021) Razrabotka oligonukleotidnyh posledovatel'nostej k genam sukcinatdegidrogenaznogo kompleksa krys (Rattus norvegicus L.). Organizaciya i regulyaciya fiziologo-biohimicheskih processov, 23, 33-37. Scholar google search
Patterson K., Molloy L., Qu W., Clark S. (2011) DNA methylation: Bisulphite modification and analysis. J. Visualized Experiments, 56, e3170. CrossRef Scholar google search
Petersen M.C., Vatner D.F., Shulman G.I. (2017) Regulation of hepatic glucose metabolism in health and disease. Nature Reviews Endocrinology, 13(10), 572-587. CrossRef Scholar google search
Eprincev A.T., Popov V.N., Shevchenko M.Yu. (2005) Ekspressiya i regulyaciya fermentov glioksilatnogo cikla, Centr. Chern. Knizhnoe izd-vo, Voronezh, 22 p. Scholar google search
Bakarev M.Yu., Fedorin D.N., Eprincev A.T. (2018) Ekspressiya genov SDHA i SDHB v pecheni krys pri alloksanovom diabete i dejstvii fitoprotektrov. Organizaciya i regulyaciya fiziologobiohimicheskih processov, 20, 31-36. Scholar google search
Comb M., Goodman H.M. (1990) CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res., 18, 3975-3982. CrossRef Scholar google search
Bollati V., Schwartz J., Wright R.O., Litonjua A.A., Tarantini L., Suh H.H. et al. (2009) Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech. Ageing Dev., 130, 234-239. CrossRef Scholar google search
Benchoula K., Parhar I.S., Madhavan P., Hwa W.E. (2021) CREB nuclear transcription activity as a targeting factor in the treatment of diabetes and diabetes complications. Biochem Pharmacol., 188, 114531. CrossRef Scholar google search