Zonulin — regulation of tight contacts in the brain and intestine — facts and hypotheses
Naryzhny S.N.1 , Legina O.K.2
1. Institute of Biomedical Chemistry, Moscow, Russia; Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia 2. Petersburg Institute of Nuclear Physics B.P. Konstantinova National Research Center “Kurchatov Institute”, Gatchina, Russia
In recent years, the interrelationship between the brain and the gut has become an area of high scientific interest. The intestine is responsible not only for digestion, as it contains millions of neurons, its own immune system, and affects the emotional and cognitive processes. The relationship between the gut and the brain suggests that the processes carried out by the gut microbiota play a significant role in the regulation of brain function, and vice versa. A special role here is played by intercellular tight junctions (TJ), where the zonulin protein holds an important place. Zonulin, an unprocessed precursor of mature haptoglobin, is the only physiological modulator of intercellular TJ that can reversibly regulate the permeability of the intestinal (IB) and blood-brain (BBB) barriers in the human body. BBB disruption and altered microbiota composition are associated with many diseases, including neurological disorders and neuroinflammation. That is, there is a gut-brain axis (GBA) — a communication system through which the brain modulates the functions of the gastrointestinal tract (GIT) and vice versa. GBA is based on neuronal, endocrine, and immunological mechanisms that are interconnected at the organismal, organ, cellular, and molecular levels.
Download PDF:
Keywords: zonulin, haptoglobin, brain, intestine
Citation:
Naryzhny S.N., Legina O.K. (2022) Zonulin — regulation of tight contacts in the brain and intestine — facts and hypotheses. Biomeditsinskaya Khimiya, 68(5), 309-320.
Naryzhny S.N. et al. Zonulin — regulation of tight contacts in the brain and intestine — facts and hypotheses // Biomeditsinskaya Khimiya. - 2022. - V. 68. -N 5. - P. 309-320.
Naryzhny S.N. et al., "Zonulin — regulation of tight contacts in the brain and intestine — facts and hypotheses." Biomeditsinskaya Khimiya 68.5 (2022): 309-320.
Naryzhny, S. N., Legina, O. K. (2022). Zonulin — regulation of tight contacts in the brain and intestine — facts and hypotheses. Biomeditsinskaya Khimiya, 68(5), 309-320.
References
Wang W., Uzzau S., Goldblum S.E., Fasano A. (2000) Human zonulin, a potential modulator of intestinal tight junctions. J. Cell Sci., 113, 4435-4440. CrossRef Scholar google search
Skardelly M., Armbruster F.P., Meixensberger J., Hilbig H. (2009) Expression of zonulin, c-kit, and glial fibrillary acidic protein in human gliomas. Transl. Oncol., 2(3), 117-120. CrossRef Scholar google search
Fasano A. (2020) All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Research, 9, 1-12. CrossRef Scholar google search
Lu R., Wang W., Uzzau S., Vigorito R., Zielke H.R., Fasano A. (2000) Affinity purification and partial characterization of the zonulin/zonula occludens toxin (Zot) receptor from human brain. J. Neurochem.,74(1), 320-326. CrossRef Scholar google search
Fasano A. (2012) Zonulin, regulation of tight junctions, and autoimmune diseases. Ann. NY Acad. Sci., 1258(1), 25-33. CrossRef Scholar google search
Pizzorno J. (2013) Zonulin! The wheat conundrum solved. Integrative Medicine, 12, 8-14. Scholar google search
Akao T., Morita A., Onji M., Miyake T., Watanabe R., Uehara T., Kawasaki K., Miyaike J., Oomoto M. (2018) Low serum levels of zonulin in patients with HCV-infected chronic liver diseases. Euroasian J. Hepato-Gastroenterology, 8(2), 112-115. CrossRef Scholar google search
Zak-Golab A., Piotr K., Aptekorz M., Zientara M., Juszczyk L., Martirosian G., Chudek J., Olszanecka-Glinianowicz M. (2013) Zonulin concentration in obese and normal weight subjects. Int. J. Endocrinol., 2013, 1-9. CrossRef Scholar google search
Sturgeon C., Fasano A. (2016) Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers, 4(4), 1-19. CrossRef Scholar google search
Yeung C.Y., Chiang Chiau J.S., Cheng M.L., Chan W.T., Jiang C.B., Chang S.W., Liu C.Y., Chang C.W., Lee H.C. (2021) Effects of vitamin D-deficient diet on intestinal epithelial integrity and zonulin expression in a C57BL/6 mouse model. Front. Med., 8, 1-13. CrossRef Scholar google search
Vanuytsel T., Vermeire S., Cleynen I. (2013) The role of Haptoglobin and its related protein, Zonulin, in inflammatory bowel disease. Tissue Barriers, 1(5), e27321. CrossRef Scholar google search
Asmar R.E., Panigrahi P., Bamford P., Berti I., Not T., Coppa G.V., Catassi C., Fasano A. (2002) Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology, 123(5), 1607-1615. CrossRef Scholar google search
Ajamian M., Steer D., Rosella G., Gibson P.R. (2019) Serum zonulin as a marker of intestinal mucosal barrier function: May not be what it seems. PLoS One, 14(1), 1-14. CrossRef Scholar google search
Demir E., Ozkan H., Seckin K.D., Sahtiyancı B., Demir B., Tabak O., Kumbasar A., Uzun H. (2019) Plasma zonulin levels as a non-invasive biomarker of intestinal permeability in women with gestational diabetes mellitus. Biomolecules, 9(24), 1-8. CrossRef Scholar google search
Khavkin A.I., Bogdanova N.M., Novikova V.P. (2021) The biological role of zonulin and the effectiveness of its use as a biomarker of the syndrome of increased intestinal permeability. Rossiiskii vestnik perinatologii i pediatrii, 66(1), 31-38. CrossRef Scholar google search
Zybina N.N., Nikonov E.L., Gershtein E.S., Memdli Z.Z., Stilidi I.S., Kushlinskii N.E. (2022) Zonulin as a marker of epithelial and endothelial barrier functions in non-communicable diseases (narrative review). Dokazatelnaya Gastroenterologiya, 11(1), 28-44. CrossRef Scholar google search
Pietrukaniec M., Migacz M., Zak-Gołąb A., Olszanecka-Glinianowicz M., Chudek J., Duława J., Holecki M. (2019) Zonulin family peptide levels in ascites and serum in patients with liver cirrhosis: A preliminary study. Dis. Markers, 2019, 1-6. CrossRef Scholar google search
Vojdani A., Vojdani E., Kharrazian D. (2017) Fluctuation of zonulin levels in blood vs stability of antibodies. World J. Gastroenterol., 23(31), 5669-5679. CrossRef Scholar google search
Giron L.B., Dweep H., Yin X., Wang H., Damra M., Goldman A.R., Gorman N., Palmer C.S., Tang H.Y., Shaikh M.W., Forsyth C.B., Balk R.A., Zilberstein N.F., Liu Q., Kossenkov A., Keshavarzian A., Landay A., Abdel-Mohsen M. (2021) Plasma markers of disrupted gut permeability in severe COVID-19 patients. Front. Immunol., 12, 1-16. CrossRef Scholar google search
Flanagan J.J., Arjomandi A., Delanoy M.L., Du Paty E., Galea P., Laune D., Rieunier F., Walker R.P., Binder S.R. (2014) Development of monoclonal antibodies to pre-haptoglobin 2 and their use in an enzyme-linked immunosorbent assay (ELISA). J. Immunol. Methods, 406, 34-42. CrossRef Scholar google search
González-Mariscal L., Betanzos A., Nava P., Jaramillo B.E. (2003) Tight junction proteins. Prog. Biophys. Mol. Biol., 81(1), 1-44. CrossRef Scholar google search
Farquhar M.G., Palade G.E. (1963) Junctional complexes in various epithelia. J. Cell Biol., 17(2), 375-412. CrossRef Scholar google search
Fasano A. (2000) Regulation of intercellular tight junctions by Zonula occludens toxin and its eukaryotic analogue zonulin. Ann. NY Acad. Sci., 915, 214-222. CrossRef Scholar google search
Turner J.R. (2009) Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol., 9(11), 799-809. CrossRef Scholar google search
Suzuki T. (2013) Regulation of intestinal epithelial permeability by tight junctions. Cell Mol. Life Sci., 70(4), 631-659. CrossRef Scholar google search
Camilleri M., Madsen K., Spiller R., van Meerveld B.G., Verne G.N. (2012) Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil., 24(6), 503-512. CrossRef Scholar google search
Baioumy S.A., Elgendy A., Ibrahim S.M., Taha S.I., Fouad S.H. (2021) Association between serum zonulin level and severity of house dust mite allergic asthma. Allergy, Asthma Clin. Immunol., 17(1), 1-10. CrossRef Scholar google search
Furuse M., Hirase T., Itoh M., Nagafuchi A., Yonemura S., Tsukita S., Tstlkita S. (1993) Occludin: A novel integral membrane protein localizing at tight junctions. J. Cell Biol., 123(6), 1777-1788. CrossRef Scholar google search
Furuse M., Fujita K., Hiiragi T., Fujimoto K., Tsukita S. (1998) Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol., 141(7), 1539-1550. CrossRef Scholar google search
Higashi T., Tokuda S., Kitajiri S.I., Masuda S., Nakamura H., Oda Y., Furuse M. (2013). Analysis of the “angulin” proteins LSR, ILDR1 and ILDR2 – tricellulin recruitment, epithelial barrier function and implication in deafness pathogenesis. J. Cell Sci., 126(4), 966-977. CrossRef Scholar google search
Ikenouchi J., Furuse M., Furuse K., Sasaki H., Tsukita S., Tsukita S. (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J. Cell Biol., 171(6), 939-945. CrossRef Scholar google search
Martìn-Padura I., Lostaglio S., Schneemann M., Williams L., Romano M., Fruscella P., Panzeri C., Stoppacciaro A., Ruco L., Villa A., David Simmons D., Dejana E. (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol., 142(1), 117-127. CrossRef Scholar google search
Gumbiner B., Lowenkopf T., Apatira D. (1991) Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc. Natl. Acad. Sci. USA, 88(8), 3460-3464. CrossRef Scholar google search
Umeda K., Ikenouchi J., Katahira-Tayama S., Furuse K., Sasaki H., Nakayama M., Matsui T., Tsukita S., Furuse M., Tsukita S. (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation, 126(4), 741-754. CrossRef Scholar google search
Haskins J., Gu L., Wittchen E.S., Hibbard J., Stevenson B.R. (1998) ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J. Cell Biol., 141(1), 199-208. CrossRef Scholar google search
Fasano A., Baudry B., Pumplin D.W., Wasserman S.S., Tall B.D., Ketley J.M., Kaper J.B. (1991) Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc. Natl. Acad. Sci. USA, 88(12), 5242-5246. CrossRef Scholar google search
Baudry B., Fasano A., Ketley J., Kaper J.B. (1991) Cloning of a gene (zot) encoding a new toxin produced by Vibrio cholerae. Infect. Immun., 60(2), 428-434. CrossRef Scholar google search
Fasano A., Fiorentini C., Donelli G., Uzzau S., Kaper J.B., Margaretten K., Ding X., Guandalini S., Comstock L., Goldblum S. (1995) Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J. Clin. Invest., 96(2), 710-720. CrossRef Scholar google search
Fasano A., Uzzau S. (1997) Modulation of intestinal tight junctions by zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J. Clin. Invest., 99(6), 1158-1164. CrossRef Scholar google search
Fasano A. (1999) Cellular microbiology: Can we learn cell physiology from microorganisms? Am. J. Physiol. – Cell Physiol., 276(4), 765-776. CrossRef Scholar google search
Kurosky A., Barnett D.R., Lee T.H., Touchstone B., Hay R.E., Arnott M.S., Bowman B.H., Fitchw.M. (1980) Covalent structure of human haptoglobin: A serine protease homolog. Proc. Natl. Acad. Sci. USA, 77(6), 3388-3392. CrossRef Scholar google search
Langlois M.R., Delanghe J.R. (1996) Biological and clinical significance of haptoglobin polymorphism in humans. Clin. Chem., 42(10), 1589-1600. CrossRef Scholar google search
Naryzhny S.N., Legina O.K. (2021) Haptoglobin as a biomarker. Biomeditsinskaya Khimia, 67(2), 105-118. CrossRef Scholar google search
Fasano A. (2011) Zonulin and its regulation of intestinal barrier function: The biological door to inflammation, autoimmunity, and cancer. Physiol. Rev., 91(1), 151-175. CrossRef Scholar google search
Tajik N., Frech M., Schulz O., Schälter F., Lucas S., Azizov V., Dürholz K., Steffen F., Omata Y., Rings A. et al. (2020). Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun., 11(1), 1-14. CrossRef Scholar google search
Schaer C.A., Owczarek C., Deuel J.W., Schauer S., Baek J.H., Yalamanoglu A., Hardy M.P., Scotney P.D., Schmidt P.M., Pelzing M., Soupourmas P., Buehler P.W., Schaer D.J. (2018) Phenotype-specific recombinant haptoglobin polymers co-expressed with C1r-like protein as optimized hemoglobin-binding therapeutics. BMC Biotechnol., 18(1), 1-13. CrossRef Scholar google search
Hanley J.M., Haugen T.H., Heath E.C. (1983) Biosynthesis and processing of rat haptoglobin. J. Biol. Chem., 258(12), 7858-7869. CrossRef Scholar google search
Wicher K.B., Fries E. (2004) Prohaptoglobin is proteolytically in the endoplasmic reticulum by the complement C1r-like protein. Proc. Natl. Acad. Sci. USA, 101(40), 14390-14395. CrossRef Scholar google search
Tripathi A., Lammers K.M., Goldblum S., Shea-Donohue T., Netzel-Arnett S., Buzza M.S., Antalis T.M., Vogel S.N., Zhao A., Yang S., Arrietta M.C., Meddings J.B., Fasano A. (2009) Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. Proc. Natl. Acad. Sci. USA, 106(39), 16799-16804. CrossRef Scholar google search
Drago S., Asmar R., di Pierro M., Clemente M.G., Tripathi A., Sapone A., Thakar M., Iacono G., Carroccio A., d'Agate C., Not T., Zampini L., Catassi C., Fasano A. (2006) Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand. J. Gastroenterol., 41(4), 408-419. CrossRef Scholar google search
Scheffler L., Crane A., Heyne H., Tönjes A., Schleinitz D., Ihling C.H., Stumvoll M., Freire R., Fiorentino M., Fasano A., Kovacs P., Heiker J.T. (2018) Widely used commercial ELISA does not detect precursor of haptoglobin2, but recognizes properdin as a potential second member of the zonulin family. Front. Endocrinol. (Lausanne), 9, 1-11. CrossRef Scholar google search
Chen J.Y., Cortes C., Ferreira V.P. (2018) Properdin: A multifaceted molecule involved in inflammation and diseases. Mol. Immunol., 102, 58-72. CrossRef Scholar google search
Bueno L., Fioramonti J. (2008) Protease-activated receptor 2 and gut permeability: A review. Neurogastroenterol. Motil., 20(6), 580-587. CrossRef Scholar google search
Raimondi F., Santoro P., Barone M.V., Pappacoda S., Barretta M.L., Nanayakkara M., Apicella C., Capasso L., Paludetto R. (2008) Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation. Am. J. Physiol. – Gastrointest. Liver Physiol., 294(4), 906-913. CrossRef Scholar google search
Wang X., Li M.-M., Niu Y., Zhang X., Yin J.-B., Zhao C.-J., Wang R. (2019) Serum zonulin in HBV-associated chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Dis. Markers, 2019, 1-6. CrossRef Scholar google search
Sturgeon C., Lan J., Fasano A. (2017) Zonulin transgenic mice show altered gut permeability and increased morbidity/mortality in the DSS colitis model. Ann. NY Acad. Sci., 1397(1), 130-142. CrossRef Scholar google search
Arrieta M.C., Madsen K., Doyle J., Meddings J. (2009) Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut, 58(1), 41-48. CrossRef Scholar google search
Slifer Z.M., Krishnan B.R., Madan J., Blikslager A.T. (2021) Larazotide acetate: A pharmacological peptide approach to tight junction regulation. Am. J. Physiol. Gastrointest. Liver Physiol., 320(6), G983-G989. CrossRef Scholar google search
Miranda-Ribera A., Ennamorati M., Serena G., Cetinbas M., Lan J., Sadreyev R.I., Jain N., Fassano A., Fiorentino M. (2019) Exploiting the zonulin mouse model to establish the role of primary impaired gut barrier function on microbiota composition and immune profiles. Front. Immunol., 10, 1-14. CrossRef Scholar google search
Marinaro M., Fasano A., de Magistris M.T. (2003) Zonula occludens toxin acts as an adjuvant through different mucosal routes and induces protective immune responses. Infect. Immun., 71(4), 1897-1902. CrossRef Scholar google search
Clemente M.G., de Virgiliis S., Kang J.S., Macatagney R., Musu M.P., di Pierro M.R., Drago S., Congia M., Fasano A. (2003) Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut, 52(2), 218-223. CrossRef Scholar google search
di Pierro M., Lu R., Uzzau S., Wang W., Margaretten K., Pazzani C., Maimone F., Fasano A. (2001) Zonula occludens toxin structure-function analysis: Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J. Biol. Chem., 276(22), 19160-19165. CrossRef Scholar google search
Wolburg H., Lippoldt A. (2002) Tight junctions of the blood-brain barrier: Development, composition and regulation. Vascul. Pharmacol., 38(6), 323-337. CrossRef Scholar google search
Zlokovic B.V. (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 57(2), 178-201. CrossRef Scholar google search
Daneman R., Rescigno M. (2009) The gut immune barrier and the blood-brain barrier: Are they so different? Immunity, 31(5), 722-735. CrossRef Scholar google search
Puputti M., Tynninen O., Sihto H., Blom T., Mäenpää H., Isola J., Paetau A., Joensuu H., Nupponen N.N. (2006) Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol. Cancer Res., 4(12), 927-934. CrossRef Scholar google search
Jung C.S., Foerch C., Schänzer A., Heck A., Plate K.H., Seifert V., Steinmetz H., Raabe A., Sitzer M. (2007) Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain, 130(12), 3336-3341. CrossRef Scholar google search
Naryzhny S., Ronzhina N., Zorina E., Kabachenko F., Zavialova M., Zgoda V., Klopov N., Legina O., Pantina R. (2021) Evaluation of haptoglobin and its proteoforms as glioblastoma markers. Int. J. Mol. Sci., 22(12),1-12. CrossRef Scholar google search
Gopalakrishnan S., Pandey N., Tamiz A.P., Vere J., Carrasco R., Somerville R., Tripathi A., Ginski M., Paterson B.M., Alkan S.S. (2009) Mechanism of action of ZOT-derived peptide AT-1002, a tight junction regulator and absorption enhancer. Int. J. Pharm., 365(1-2), 121-130. CrossRef Scholar google search
Bocsik A., Walter F.R., Gyebrovszki A., Fülöp L., Blasig I., Dabrowski S., Otvos F., Toth A., Rakhely G., Veszelka S., Vastag M., Szabo-Revesz P., Deli M. (2016) Reversible opening of intercellular junctions of intestinal epithelial and brain endothelial cells with tight junction modulator peptides. J. Pharm. Sci., 105(2), 754-765. CrossRef Scholar google search
Díaz-Coránguez M., Segovia J., López-Ornelas A., Puerta-Guardo H., Ludert J., Chávez B., Meraz-Cruz N., González-Mariscal L. (2013) Transmigration of neural cells across the blood brain barrier induced by glioma cells. PLoS One, 8(4), 1-13. CrossRef Scholar google search
Rahman M.T., Ghosh C., Hossain M., Linfield D., Rezaee F., Janigro D., Marchi N., van Boxel-Dezaire A.N.N. (2018) IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: Relevance for neuro-inflammatory diseases. Biochem. Biophys. Res. Commun., 507(1-4), 274-279. CrossRef Scholar google search
Buscarinu M.C., Romano S., Mechelli R., Pizzolato Umeton R., Ferraldeschi M., Fornasiero A., Reniè R., Cerasoli B., Morena E., Romano C., Loizzo N.D., Umeton R., Salvetti M., Ristori G. (2018) Intestinal permeability in relapsing-remitting multiple sclerosis. Neurotherapeutics, 15(1), 68-74. CrossRef Scholar google search
Camara-Lemarroy C.R., Metz L., Meddings J.B., Sharkey K.A., Wee Yong V. (2018) The intestinal barrier in multiple sclerosis: Implications for pathophysiology and therapeutics. Brain, 141(7), 1900-1916. CrossRef Scholar google search
Benson K., Cramer S., Galla H.J. (2013) Impedance-based cell monitoring: Barrier properties and beyond. Fluids Barriers CNS, 10(1), 1-11. CrossRef Scholar google search
Lechuga S., Ivanov A.I. (2017) Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms. Biochim. Biophys. Acta – Mol. Cell Res., 1864(7), 1183-1194. CrossRef Scholar google search
Ivanov A.I., Parkos C.A., Nusrat A. (2010) Cytoskeletal regulation of epithelial barrier function during inflammation. Am. J. Pathol., 177(2), 512-524. CrossRef Scholar google search
Miranda-Ribera A., Serena G., Liu J., Fasano A., Kingsbury M.A., Fiorentino M.R. (2022) The Zonulintransgenic mouse displays behavioral alterations ameliorated via depletion of the gut microbiota. Tissue Barriers, 10(3), DOI: 10.1080/21688370.2021.2000299. CrossRef Scholar google search
Maget A., Dalkner N., Hamm C., Bengesser S.A., Fellendorf F.T., Platzer M., Queissner R., Birner A., Lenger M., Morkl S., Kohlhammer-Dohr A., Rieger A., Seidl M., Mendel L., Farber T., Wetzlmair L., Schwalsberger K., Amberger-Otti D.V., Schoggl H., Lahousen T., Leitner-Afschar B., Unterweger R., Zelzer S., Mangge H., Reininghaus E.Z. (2021) Sex differences in zonulin in affective disorders and associations with current mood symptoms. J. Affect. Disord., 294, 441-446. CrossRef Scholar google search
Cenit M.C., Sanz Y., Codoñer-Franch P. (2017) Influence of gut microbiota on neuropsychiatric disorders. World J. Gastroenterol., 23(30), 5486-5498. CrossRef Scholar google search
Stilling R.M., Dinan T.G., Cryan J.F. (2014) Microbial genes, brain and behaviour – epigenetic regulation of the gut-brain axis. Genes, Brain Behav., 13(1), 69-86. CrossRef Scholar google search
Carabotti M., Scirocco A., Maselli M.A., Severi C. (2015) The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol., 28(2), 203-209. Scholar google search
Mayer E.A., Padua D., Tillisch K. (2014) Altered brain-gut axis in autism: Comorbidity or causative mechanisms? BioEssays, 36(10), 933-939. CrossRef Scholar google search
Song Y., Liu C., Finegold S.M. (2004) Real-time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microbiol., 70(11), 6459-6465. CrossRef Scholar google search
Galley J.D., Nelson M.C., Yu Z., Dowd S.E., Walter J., Kumar P.S., Lyte M., Bailey M.T. (2014) Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol., 14, 1-13. CrossRef Scholar google search
Luczynski P., McVey Neufeld K.A., Oriach C.S., Clarke G., Dinan T.G., Cryan J.F. (2016) Growing up in a bubble: Using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int. J. Neuropsychopharmacol., Invited Review, 19(8), 1-17. CrossRef Scholar google search
Bonaz B., Bazin T., Pellissier S. (2018) The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci., 12, 1-9. CrossRef Scholar google search
Llorens S., Nava E., Muñoz-López M., Sánchez-Larsen Á., Segura T. (2021) Neurological symptoms of COVID-19: The zonulin hypothesis. Front. Immunol., 12, 1-9. CrossRef Scholar google search
Romero-Sánchez C.M., Díaz-Maroto I., Fernández-Díaz E., Sánchez-Larsen Á., Layos-Romero A., García-García J., González E., Redondo-Peñas I., Perona-Moratalla A.B., Valle-Perez J.A.D., Gracia-Gil J., Rojas-Bartolome L., Feria-Vilar I., Monteagudo M., Palao M., Palazon-García E., Alcahut-Rodríguez C., Sopelana-Garay D., Moreno Y., Ahmad J., Segura T. (2020) Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology, 95(8), e1060-70. CrossRef Scholar google search
Jacob A., Alexander J.J. (2014) Complement and blood-brain barrier integrity. Mol. Immunol., 61(2), 149-152. CrossRef Scholar google search
Robinson C.P., Busl K.M. (2020) Neurologic manifestations of severe respiratory viral contagions. Crit. Care Explor., 2(4), e0107. CrossRef Scholar google search
Lee D.B.N., Huang E., Ward H.J. (2006) Tight junction biology and kidney dysfunction. Am. J. Physiol. – Ren. Physiol., 290(1), 20-34. CrossRef Scholar google search
Yu J., Shen Y., Zhou N. (2021) Advances in the role and mechanism of zonulin pathway in kidney diseases. Int. Urol. Nephrol., 53(10), 2081-2088. CrossRef Scholar google search
Leaky gut, leaky brain: the role of zonulin. Retried August 8, 2022 from https://www.fxmedicine.com.au/content/leaky-gut-leaky-brain-role-zonulin. Scholar google search