Regulation of gene expression is an extremely complex and multicomponent biological phenomenon. Proteins containing the CXXC-domain “zinc fingers” (CXXC-proteins) are master regulators of expression of many genes and have conserved functions of methylation of DNA bases and histone proteins. CXXC proteins function as a part of multiprotein complexes, which indicates the fundamental importance of studying post-translational regulation through modulation of the protein-protein interaction spectrum (PPI) in both normal and pathological conditions. In this paper we discuss general aspects of the involvement of CXXC proteins and their protein partners in neoplastic processes, both from the literature data and our own studies. Special attention is paid to recent data on the particular interactomics of the CFP1 protein encoded by the CXXC1 gene located on the human chromosome 18. CFP1 is devoid of enzymatic activity and implements epigenetic regulation of expression through binding to chromatin and a certain spectrum of PPIs.
Ershov P.V., Yablokov E.O., Mezentsev Y.V., Ivanov A.S. (2022) Interactomics of CXXC proteins involved in epigenetic regulation of gene expression. Biomeditsinskaya Khimiya, 68(5), 339-351.
Ershov P.V. et al. Interactomics of CXXC proteins involved in epigenetic regulation of gene expression // Biomeditsinskaya Khimiya. - 2022. - V. 68. -N 5. - P. 339-351.
Ershov P.V. et al., "Interactomics of CXXC proteins involved in epigenetic regulation of gene expression." Biomeditsinskaya Khimiya 68.5 (2022): 339-351.
Ershov, P. V., Yablokov, E. O., Mezentsev, Y. V., Ivanov, A. S. (2022). Interactomics of CXXC proteins involved in epigenetic regulation of gene expression. Biomeditsinskaya Khimiya, 68(5), 339-351.
References
Grechkin M., Logsdon B.A., Gentles A.J., Lee S.-I. (2016) Identifying network perturbation in cancer. PLoS Comput. Biol., 12(5), e1004888. CrossRef Scholar google search
Vidal M., Cusick M.E., Barabási A.-L. (2011) Interactome networks and human disease. Cell, 144(6), 986-998. CrossRef Scholar google search
Cassandri M., Smirnov A., Novelli F., Pitolli C., Agostini M., Malewicz M., Melino G., Raschellà G. (2017) Zinc-finger proteins in health and disease. Cell Death Discov., 3, 17071. CrossRef Scholar google search
Conacci-Sorrell M., McFerrin L., Eisenman R.N. (2014) An overview of MYC and its interactome. Cold Spring Harb. Perspect. Med., 4(1), a014357. CrossRef Scholar google search
Lu H., Zhou Q., He J., Jiang Z., Peng C., Tong R., Shi J. (2020) Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct. Target Ther., 5(1), 213. CrossRef Scholar google search
Blackledge N.P., Thomson J.P., Skene P.J. (2013) CpG island chromatin is shaped by recruitment of ZF-CxxC proteins. Cold Spring Harb. Perspect. Biol., 5(11), a018648. CrossRef Scholar google search
HGNC: HUGO Gene Nomenclature Committee. https://www.genenames.org/. Scholar google search
Liu K., Min J. (2020) Structural basis for the recognition of non-methylated DNA by the CXXC domain. J. Mol. Biol., 432(6), 1674-1686. CrossRef Scholar google search
Xu C., Liu K., Lei M., Yang A., Li Y., Hughes T.R., Min J. (2018) DNA sequence recognition of human CXXC domains and their structural determinants. Structure, 26(1), 85-95.e3. CrossRef Scholar google search
Pfam database: CXXC zinc finger domain. http://pfam.xfam.org/family/pf02008. Scholar google search
Kuang Y., Xu H., Lu F., Meng J., Yi Y., Yang H., Hou H., Wei H., Su S. (2021) Inhibition of microRNA let-7b expression by KDM2B promotes cancer progression by targeting EZH2 in ovarian cancer. Cancer Sci., 112(1), 231-242. CrossRef Scholar google search
Leng X., Wang J., An N., Wang X., Sun Y., Chen Z. (2020) Histone 3 lysine-27 demethylase KDM6A coordinates with KMT2B to play an oncogenic role in NSCLC by regulating H3K4me3. Oncogene, 39(41), 6468-6479. CrossRef Scholar google search
Ayaz G., Turan G., Olgun Ç.E., Kars G., Karakaya B., Yavuz K., Demiralay Ö.D., Can T., Muyan M., Yaşar P. (2021) A prelude to the proximity interaction mapping of CXXC5. Sci. Rep., 11(1), 17587. CrossRef Scholar google search
Piñero J., Ramírez-Anguita J.M., Saüch-Pitarch J., Ronzano F., Centeno E., Sanz F., Furlong L.I. (2020) The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 48(D1), D845-D855. CrossRef Scholar google search
Rabal O., San José-Enériz E., Agirre X., Sánchez-Arias J.A., de Miguel I., Ordoñez R., Garate L., Miranda E., Sáez E., Vilas-Zornoza A., Pineda-Lucena A., Estella A., Zhang F., Wu W., Xu M., Prosper F., Oyarzabal J. (2021) Design and synthesis of novel epigenetic inhibitors targeting histone deacetylases, DNA methyltransferase 1, and lysine methyltransferase G9a with in vivo efficacy in multiple myeloma. J. Med. Chem., 64(6), 3392-3426. CrossRef Scholar google search
Tregnago C., Benetton M., Da Ros A., Borella G., Longo G., Polato K., Francescato S., Biffi A., Pigazzi M. (2021) Novel compounds synergize with venetoclax to target KMT2A-rearranged pediatric acute myeloid leukemia. Front. Pharmacol., 12, 820191. CrossRef Scholar google search
Massoth L.R., Hung Y.P., Dias-Santagata D., Onozato M., Shah N., Severson E., Duncan D., Gillespie B.J., Williams N.F., Ross J.S., Vergilio J.-A., Harkins S.K., Glomski K., Nardi V., Zukerberg L.R., Hasserjian R.P., Louissaint A., Williams E.A. (2020) Pan-cancer landscape analysis reveals recurrent KMT2A-MAML2 gene fusion in aggressive histologic subtypes of thymoma. JCO Precis. Oncol., 4, PO.19.00288. CrossRef Scholar google search
Wong W.H., Junck L., Druley T.E., Gutmann D.H. (2019) NF1 glioblastoma clonal profiling reveals KMT2B mutations as potential somatic oncogenic events. Neurology, 93(24), 1067-1069. CrossRef Scholar google search
Li H., Liu J.-W., Sun L.-P., Yuan Y. (2017) A meta-analysis of the association between DNMT1 polymorphisms and cancer risk. Biomed. Res. Int., 2017, 3971259. CrossRef Scholar google search
Wu H.-X., Chen Y.-X., Wang Z.-X., Zhao Q., He M.-M., Wang Y.-N., Wang F., Xu R.-H. (2019) Alteration in TET1 as potential biomarker for immune checkpoint blockade in multiple cancers. J. Immunother. Cancer, 7(1), 264. CrossRef Scholar google search
Lu B., Wei J., Zhou H., Chen J., Li Y., Ye L., Zhao W., Wu S. (2022) Histone H3K36me2 demethylase KDM2A promotes bladder cancer progression through epigenetically silencing RARRES3. Cell Death Dis., 13(6), 547. CrossRef Scholar google search
Wang J., Li T., Li X., Zhang Y., Wang X. (2021) Expression pattern and regulatory effect of lysine-specific demethylase 2A gene in clear cell renal cell carcinoma. BMC Urol., 21(1), 108. CrossRef Scholar google search
Fang Y., Zhang D., Hu T., Zhao H., Zhao X., Lou Z., He Y., Qin W., Xia J., Zhang X., Ye L.-C. (2019) KMT2A histone methyltransferase contributes to colorectal cancer development by promoting cathepsin Z transcriptional activation. Cancer Med., 8(7), 3544-3552. CrossRef Scholar google search
Wensheng L., Bo Z., Qiangsheng H., Wenyan X., Shunrong J., Jin X., Quanxing N., Xianjun Y., Xiaowu X. (2019) MBD1 promotes the malignant behavior of gallbladder cancer cells and induces chemotherapeutic resistance to gemcitabine. Cancer Cell Int., 19, 232. CrossRef Scholar google search
Jia G., Song Z., Xu Z., Tao Y., Wu Y., Wan X. (2021) Screening of gene markers related to the prognosis of metastatic skin cutaneous melanoma based on Logit regression and survival analysis. BMC Med. Genomics, 14(1), 96. CrossRef Scholar google search
Sun J., Long Y., Peng X., Xiao D., Zhou J., Tao Y., Liu S. (2019) The survival analysis and oncogenic effects of CFP1 and 14-3-3 expression on gastric cancer. Cancer Cell Int., 19, 225. CrossRef Scholar google search
Li P., Ge D., Li P., Hu F., Chu J., Chen X., Song W., Wang A., Tian G., Gu X. (2020) CXXC finger protein 4 inhibits the CDK18-ERK1/2 axis to suppress the immune escape of gastric cancer cells with involvement of ELK1/MIR100HG pathway. J. Cell Mol. Med., 24(17), 10151-10165. CrossRef Scholar google search
Han M., Dai D., Yousafzai N.A., Wang F., Wang H., Zhou Q., Lu H., Xu W., Feng L., Jin H., Wang X. (2017) CXXC4 activates apoptosis through up-regulating GDF15 in gastric cancer. Oncotarget, 8(61), 103557-103567. CrossRef Scholar google search
Fu Y., Wang Z., Luo C., Wang Y., Wang Y., Zhong X., Zheng H. (2020) Downregulation of CXXC Finger protein 4 leads to a tamoxifen-resistant phenotype in breast cancer cells through activation of the Wnt/β-catenin pathway. Transl. Oncol., 13(2), 423-440. CrossRef Scholar google search
Baylin S.B., Jones P.A. (2016) Epigenetic determinants of cancer. Cold Spring Harb. Perspect. Biol., 8(9), a019505. CrossRef Scholar google search
Fishilevich S., Nudel R., Rappaport N., Hadar R., Plaschkes I., Iny Stein T., Rosen N., Kohn A., Twik M., Safran M., Lancet D., Cohen D. (2017) GeneHancer: Genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford), 2017, bax028. CrossRef Scholar google search
GeneCards®: The Human Gene Database. https://www.genecards.org/. Scholar google search
KEGG: Kyoto Encyclopedia of Genes and Genomes. https://www.kegg.jp/. Scholar google search
CGC: Cancer Gene Census. https://cancer.sanger.ac.uk/cosmic/census. Scholar google search
Wang F., Wang L., Xu Z., Liang G. (2013) Identification and analysis of multi-protein complexes in placenta. PLoS One, 8(4), e62988. CrossRef Scholar google search
Will T., Helms V. (2019) Differential analysis of combinatorial protein complexes with CompleXChange. BMC Bioinformatics, 20(1), 300. CrossRef Scholar google search
Alexeyenko A., Schmitt T., Tjärnberg A., Guala D., Frings O., Sonnhammer E.L.L. (2012) Comparative interactomics with Funcoup 2.0. Nucleic Acids Res., 40(Database issue), D821-D828. CrossRef Scholar google search
Calderone A., Castagnoli L., Cesareni G. (2013) Mentha: A resource for browsing integrated protein-interaction networks. Nat. Methods, 10(8), 690-691. CrossRef Scholar google search
Alonso-López D., Campos-Laborie F.J., Gutiérrez M.A., Lambourne L., Calderwood M.A., Vidal M., de las Rivas J. (2019) APID database: Redefining protein-protein interaction experimental evidences and binary interactomes. Database (Oxford), 2019, baz005. CrossRef Scholar google search
Licata L., Briganti L., Peluso D., Perfetto L., Iannuccelli M., Galeota E., Sacco F., Palma A., Nardozza A.P., Santonico E., Castagnoli L., Cesareni G. (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res., 40(Database issue), D857-D861. CrossRef Scholar google search
Luck K., Kim D.-K., Lambourne L., Spirohn K., Begg B.E., Bian W., Brignall R., Cafarelli T., Campos-Laborie F.J., Charloteaux B., Choi D., Coté A.G., Daley M., Deimling S., Desbuleux A., Dricot A., Gebbia M., Hardy M.F., Kishore N., Knapp J.J., Kovács I.A., Lemmens I., Mee M.W., Mellor J.C., Pollis C., Pons C., Richardson A.D., Schlabach S., Teeking B., Yadav A., Babor M., Balcha D., Basha O., Bowman-Colin C., Chin S.-F., Choi S.G., Colabella C., Coppin G., d’Amata C., de Ridder D., de Rouck S., Duran-Frigola M., Ennajdaoui H., Goebels F., Goehring L., Gopal A., Haddad G., Hatchi E., Helmy M., Jacob Y., Kassa Y., Landini S., Li R., van Lieshout N., MacWilliams A., Markey D., Paulson J.N., Rangarajan S., Rasla J., Rayhan A., Rolland T., San-Miguel A., Shen Y., Sheykhkarimli D., Sheynkman G.M., Simonovsky E., Taşan M., Tejeda A., Tropepe V., Twizere J.-C., Wang Y., Weatheritt R.J., Weile J., Xia Y., Yang X., Yeger-Lotem E., Zhong Q., Aloy P., Bader G.D., de las Rivas J., Gaudet S., Hao T., Rak J., Tavernier J., Hill D.E., Vidal M., Roth F.P., Calderwood M.A. (2020) A reference map of the human binary protein interactome. Nature, 580(7803), 402-408. CrossRef Scholar google search
Kotlyar M., Pastrello C., Malik Z., Jurisica I. (2019) IID 2018 update: Context-specific physical protein-protein interactions in human, model organisms and domesticated species. Nucleic Acids Res., 47(D1), D581-D589. CrossRef Scholar google search
Schweppe D.K., Huttlin E.L., Harper J.W., Gygi S.P. (2018) BioPlex Display: An interactive suite for large-scale AP-MS protein-protein interaction data. J. Proteome Res., 17(1), 722-726. CrossRef Scholar google search
Orii N., Ganapathiraju M.K. (2012) Wiki-pi: A web-server of annotated human protein-protein interactions to aid in discovery of protein function. PLoS One, 7(11), e49029. CrossRef Scholar google search
Alanis-Lobato G., Andrade-Navarro M.A., Schaefer M.H. (2017) HIPPIE v2.0: Enhancing meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Res., 45(D1), D408-D414. CrossRef Scholar google search
Das J., Yu H. (2012) HINT: High-quality protein interactomes and their applications in understanding human disease. BMC Syst. Biol., 6, 92. CrossRef Scholar google search
Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., Jensen L.J., von Mering C. (2019) STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 47(D1), D607-D613. CrossRef Scholar google search
Liao Y., Wang J., Jaehnig E.J., Shi Z., Zhang B. (2019) WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res., 47(W1), W199-W205. CrossRef Scholar google search
Giurgiu M., Reinhard J., Brauner B., Dunger-Kaltenbach I., Fobo G., Frishman G., Montrone C., Ruepp A. (2019) CORUM: The comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res., 47(D1), D559-D563. CrossRef Scholar google search
Szklarczyk D., Gable A.L., Nastou K.C., Lyon D., Kirsch R., Pyysalo S., Doncheva N.T., Legeay M., Fang T., Bork P., Jensen L.J., von Mering C. (2021) The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 49(D1), D605-D612. CrossRef Scholar google search
Park S.-J., Yoon B.-H., Kim S.-K., Kim S.-Y. (2019) GENT2: An updated gene expression database for normal and tumor tissues. BMC Med. Genomics, 12(Suppl 5), 101. CrossRef Scholar google search
Tang Z., Kang B., Li C., Chen T., Zhang Z. (2019) GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res., 47(W1), W556-W560. CrossRef Scholar google search
Cheray M., Nadaradjane A., Bonnet P., Routier S., Vallette F.M., Cartron P.-F. (2014) Specific inhibition of DNMT1/CFP1 reduces cancer phenotypes and enhances chemotherapy effectiveness. Epigenomics, 6(3), 267-275. CrossRef Scholar google search
Yang Y., Yang Y., Chan K., Couture J.-F. (2021) Analyzing the impact of CFP1 mutational landscape on epigenetic signaling. FASEB J., 35(8), e21790. CrossRef Scholar google search
Derks S., Bosch L.J.W., Niessen H.E.C., Moerkerk P.T.M., van den Bosch S.M., Carvalho B., Mongera S., Voncken J.W., Meijer G.A., de Bruïne A.P., Herman J.G., van Engeland M. (2009) Promoter CpG island hypermethylation- and H3K9me3 and H3K27me3-mediated epigenetic silencing targets the deleted in colon cancer (DCC) gene in colorectal carcinogenesis without affecting neighboring genes on chromosomal region 18q21. Carcinogenesis, 30(6), 1041-1048. CrossRef Scholar google search
Wang L., Collings C.K., Zhao Z., Cozzolino K.A., Ma Q., Liang K., Marshall S.A., Sze C.C., Hashizume R., Savas J.N., Shilatifard A. (2017) A cytoplasmic COMPASS is necessary for cell survival and triple-negative breast cancer pathogenesis by regulating metabolism. Genes Dev., 31(20), 2056-2066. CrossRef Scholar google search
van de Lagemaat L.N., Flenley M., Lynch M.D., Garrick D., Tomlinson S.R., Kranc K.R., Vernimmen D. (2018) CpG binding protein (CFP1) occupies open chromatin regions of active genes, including enhancers and non-CpG islands. Epigenetics Chromatin, 11(1), 59. CrossRef Scholar google search
Lin F., Meng X., Guo Y., Cao W., Liu W., Xia Q., Hui Z., Chen J., Hong S., Zhang X., Wu C., Wang D., Wang J., Lu L., Qian W., Wei L., Wang L. (2019) Epigenetic initiation of the TH17 differentiation program is promoted by CXXC finger protein 1. Sci. Adv., 5(10), eaax1608. CrossRef Scholar google search
Young S.R.L., Skalnik D.G. (2007) CXXC finger protein 1 is required for normal proliferation and differentiation of the PLB-985 myeloid cell line. DNA Cell Biol., 26(2), 80-90. CrossRef Scholar google search
Chun K.T., Li B., Dobrota E., Tate C., Lee J.-H., Khan S., Haneline L., HogenEsch H., Skalnik D.G. (2014) The epigenetic regulator CXXC finger protein 1 is essential for murine hematopoiesis. PLoS One, 9(12), e113745. CrossRef Scholar google search
Jiang Y., Zhang H.-Y., Lin Z., Zhu Y.-Z., Yu C., Sha Q.-Q., Tong M.-H., Shen L., Fan H.-Y. (2020) CXXC finger protein 1-mediated histone H3 lysine-4 trimethylation is essential for proper meiotic crossover formation in mice. Development, 147(6), dev183764. CrossRef Scholar google search
Sha Q.-Q., Dai X.-X., Jiang J.-C., Yu C., Jiang Y., Liu J., Ou X.-H., Zhang S.-Y., Fan H.-Y. (2018) CFP1 coordinates histone H3 lysine-4 trimethylation and meiotic cell cycle progression in mouse oocytes. Nat. Commun., 9(1), 3477. CrossRef Scholar google search
Cao W., Guo J., Wen X., Miao L., Lin F., Xu G., Ma R., Yin S., Hui Z., Chen T., Guo S., Chen W., Huang Y., Liu Y., Wang J., Wei L., Wang L. (2016) CXXC finger protein 1 is critical for T-cell intrathymic development through regulating H3K4 trimethylation. Nat. Commun., 7, 11687. CrossRef Scholar google search
Sha Q.-Q., Zhu Y.-Z., Xiang Y., Yu J.-L., Fan X.-Y., Li Y.-C., Wu Y.-W., Shen L., Fan H.-Y. (2021) Role of CxxC-finger protein 1 in establishing mouse oocyte epigenetic landscapes. Nucleic Acids Res., 49(5), 2569-2582. CrossRef Scholar google search
Ershov P.V., Mezentsev Yu.V., Yablokov E.O., Kaluzhskiy L.A., Florinskaya A.V., Gnedenko O.V., Zgoda V.G., Vakhrushev I.V., Raeva O.S., Yarygin K.N., Gilep A.A., Usanov S.A., Medvedev A.E., Ivanov A.S. (2018) Direct molecular fishing of potential partners of protein-protein interactions in the HepG2 cells lysate that involve proteins encoded by genes of human chromosome 18. Russian Journal of Bioorganic Chemistry, 44(6), 759-768. CrossRef Scholar google search
Havugimana P.C., Hart G.T., Nepusz T., Yang H., Turinsky A.L., Li Z., Wang P.I., Boutz D.R., Fong V., Phanse S., Babu M., Craig S.A., Hu P., Wan C., Vlasblom J., Dar V.-N., Bezginov A., Clark G.W., Wu G.C., Wodak S.J., Tillier E.R.M., Paccanaro A., Marcotte E.M., Emili A. (2012) A census of human soluble protein complexes. Cell, 150(5), 1068-1081. CrossRef Scholar google search
Heusel M., Bludau I., Rosenberger G., Hafen R., Frank M., Banaei-Esfahani A., van Drogen A., Collins B.C., Gstaiger M., Aebersold R. (2019) Complex-centric proteome profiling by SEC-SWATH-MS. Mol. Syst. Biol., 15(1), e8438. CrossRef Scholar google search
Heusel M., Frank M., Köhler M., Amon S., Frommelt F., Rosenberger G., Bludau I., Aulakh S., Linder M.I., Liu Y., Collins B.C., Gstaiger M., Kutay U., Aebersold R. (2020) A global screen for assembly state changes of the mitotic proteome by SEC-SWATH-MS. Cell Syst., 10(2), 133-155.e6. CrossRef Scholar google search
Larance M., Kirkwood K.J., Tinti M., Brenes Murillo A., Ferguson M.A.J., Lamond A.I. (2016) Global membrane protein interactome analysis using in vivo crosslinking and mass spectrometry-based protein correlation profiling. Mol. Cell Proteomics, 15(7), 2476-2490. CrossRef Scholar google search
Mellacheruvu D., Wright Z., Couzens A.L., Lambert J.-P., St-Denis N.A., Li T., Miteva Y.V., Hauri S., Sardiu M.E., Low T.Y., Halim V.A., Bagshaw R.D., Hubner N.C., Al-Hakim A., Bouchard A., Faubert D., Fermin D., Dunham W.H., Goudreault M., Lin Z.-Y., Badillo B.G., Pawson T., Durocher D., Coulombe B., Aebersold R., Superti-Furga G., Colinge J., Heck A.J.R., Choi H., Gstaiger M., Mohammed S., Cristea I.M., Bennett K.L., Washburn M.P., Raught B., Ewing R.M., Gingras A.-C., Nesvizhskii A.I. (2013) The CRAPome: A contaminant repository for affinity purification-mass spectrometry data. Nat. Methods, 10(8), 730-736. CrossRef Scholar google search
van Dam S., Craig T., de Magalhres J.P. (2015) GeneFriends: A human RNA-seq-based gene and transcript co-expression database. Nucleic Acids Res., 43(Database issue), D1124-D1132. CrossRef Scholar google search
Armaos A., Zacco E., Sanchez de Groot N., Tartaglia G.G. (2021) RNA-protein interactions: Central players in coordination of regulatory networks. Bioessays, 43(2), e2000118. CrossRef Scholar google search
Du X., Xiao R. (2020) An emerging role of chromatininteracting RNA-binding proteins in transcription egulation. Essays Biochem., 64(6), 907-918. CrossRef Scholar google search
Xiao R., Chen J.-Y., Liang Z., Luo D., Chen G., Lu Z.J., Chen Y., Zhou B., Li H., Du X., Yang Y., San M., Wei X., Liu W., Lécuyer E., Graveley B.R., Yeo G.W., Burge C.B., Zhang M.Q., Zhou Y., Fu X.-D. (2019) Pervasive chromatin-RNA binding protein interactions enable RNA-based regulation of transcription. Cell, 178(1), 107-121.e18. CrossRef Scholar google search
Wang Q., Guo Y., Wang W., Liu B., Yang G., Xu Z., Li J., Liu Z. (2021) RNA binding protein DAZAP1 promotes HCC progression and regulates ferroptosis by interacting with SLC7A11 mRNA. Exp. Cell Res., 399(1), 112453. CrossRef Scholar google search
Oughtred R., Rust J., Chang C., Breitkreutz B.-J., Stark C., Willems A., Boucher L., Leung G., Kolas N., Zhang F., Dolma S., Coulombe-Huntington J., Chatr-Aryamontri A., Dolinski K., Tyers M. (2021) The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci., 30(1), 187-200. CrossRef Scholar google search
Malovannaya A., Lanz R.B., Jung S.Y., Bulynko Y., Le N.T., Chan D.W., Ding C., Shi Y., Yucer N., Krenciute G., Kim B.-J., Li C., Chen R., Li W., Wang Y., O’Malley B.W., Qin J. (2011) Analysis of the human endogenous coregulator complexome. Cell, 145(5), 787-799. CrossRef Scholar google search
Zhao W., Zhao J., Hou M., Wang Y., Zhang Y., Zhao X., Zhang C., Guo D. (2014) HuR and TIA1/TIAL1 are involved in regulation of alternative splicing of SIRT1 pre-mRNA. Int. J. Mol. Sci., 15(2), 2946-2958. CrossRef Scholar google search
Cheng D., Côté J., Shaaban S., Bedford M.T. (2007) The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol. Cell, 25(1), 71-83. CrossRef Scholar google search
Greulich F., Wierer M., Mechtidou A., Gonzalez-Garcia O., Uhlenhaut N.H. (2021) The glucocorticoid receptor recruits the COMPASS complex to regulate inflammatory transcription at macrophage enhancers. Cell Rep., 34(6), 108742. CrossRef Scholar google search
Daverkausen-Fischer L., Pröls F. (2021) Dual topology of co-chaperones at the membrane of the endoplasmic reticulum. Cell Death Discov., 7(1), 203. CrossRef Scholar google search
Dong M., Bridges J.P., Apsley K., Xu Y., Weaver T.E. (2008) ERdj4 and ERdj5 are required for endoplasmic reticulum-associated protein degradation of misfolded surfactant protein C. Mol. Biol. Cell, 19(6), 2620-2630. CrossRef Scholar google search
Lee S.F., Li L., Jalal N., Halperin S.A. (2021) Identification of a thiol-disulfide oxidoreductase (SdbA) catalyzing disulfide bond formation in the superantigen SpeA in Streptococcus pyogenes. J. Bacteriol., 203(17), e0015321. CrossRef Scholar google search
Zhang X., Zhou Y., Yu X., Huang Q., Fang W., Li J., Bonventre J.V., Sukhova G.K., Libby P., Shi G.-P. (2019) Differential roles of cysteinyl cathepsins in TGF-β signaling and tissue fibrosis. iScience, 19, 607-622. CrossRef Scholar google search
Gondi C.S., Rao J.S. (2013) Cathepsin B as a cancer target. Expert Opin. Ther. Targets, 17(3), 281-291. CrossRef Scholar google search
Nettesheim A., Shim M.S., Dixon A., Raychaudhuri U., Gong H., Liton P.B. (2020) Cathepsin B localizes in the caveolae and participates in the proteolytic cascade in trabecular meshwork cells. Potential new drug target for the treatment of glaucoma. J. Clin. Med., 10(1), E78. CrossRef Scholar google search
Colland F., Jacq X., Trouplin V., Mougin C., Groizeleau C., Hamburger A., Meil A., Wojcik J., Legrain P., Gauthier J.-M. (2004) Functional proteomics mapping of a human signaling pathway. Genome Res., 14(7), 1324-1332. CrossRef Scholar google search
Baas R., Sijm A., van Teeffelen H.A.A.M., van Es R., Vos H.R., Marc Timmers H.T. (2016) Quantitative proteomics of the SMAD (Suppressor of Mothers Against Decapentaplegic) transcription factor family identifies importin 5 as a bone morphogenic protein receptor SMAD-specific importin. J. Biol. Chem., 291(46), 24121-24132. CrossRef Scholar google search