Changes of α₂-macroglobulin activity and endothelin-1 concentration in tears of rabbits after transplantation of retinal pigment epithelium cells derived from the induced pluripotent stem cells
1. Helmholtz National Medical Research Center of Eye Diseases, Moscow, Russia 2. Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia 3. Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Retinal diseases accompanied with the dysfunction or death of the retinal pigment epithelial (RPE) cells are widespread, hard to treat, and appear to be a leading case of visual loss and blindness among the persons older than 55 years. Transplantation of RPE cells derived from the induced pluripotent stem cells (IPSC-RPE) is a promising method of therapy for these diseases. To ensure the transplant survival instant follow-up is required. It can be based on biochemical analyses of tear fluid that can be easily non-invasively collected. For the post-transplantation process monitoring we have choosen such polyfunctional bioregulators as α2-macroglobulin (α2-MG) and endothelin-1 (ET-1). RPE atrophy in New Zealand Albino rabbits was modeled via the subretinal injection of bevacizumab. IPSC-RPE in suspension or as a monolayer on the scaffold were transplanted subretinally 1 month after the injection. α2-MG activity and ET-1 concentration in tears were estimated during the first month and after 2, 3 and 7 months after transplantation. On the 7-14 days after transplantation α2-MG activity increased in tears of the both operated and controlateral eye probably as a reaction on the corticosteroid therapy. In 50% rabbits there was one more increase after 2-3 months that could be due to the immune inflammation. Concentration of ET-1 in tears decreased dramatically on the 7-14 days and 7 months after transplantation, and it could have an influence upon the retinal vassal tone. The data obtained show that estimation of bioregulators in tears can help monitoring local metabolic processes after RPE transplantation that is necessary for the opportune, reasonable and focused medicamental correction of post-transplantation process.
Neroeva N.V., Neroev V.V., Chesnokova N.B., Katargina L.A., Pavlenko T.A., Beznos O.V., Ilyukhin P.A., Utkina O.A., Lagarkova M.A., Laktionov P.P., Bogomazova A.N., Kharitonov A.E. (2022) Changes of α₂-macroglobulin activity and endothelin-1 concentration in tears of rabbits after transplantation of retinal pigment epithelium cells derived from the induced pluripotent stem cells. Biomeditsinskaya Khimiya, 68(5), 352-360.
Neroeva N.V. et al. Changes of α₂-macroglobulin activity and endothelin-1 concentration in tears of rabbits after transplantation of retinal pigment epithelium cells derived from the induced pluripotent stem cells // Biomeditsinskaya Khimiya. - 2022. - V. 68. -N 5. - P. 352-360.
Neroeva N.V. et al., "Changes of α₂-macroglobulin activity and endothelin-1 concentration in tears of rabbits after transplantation of retinal pigment epithelium cells derived from the induced pluripotent stem cells." Biomeditsinskaya Khimiya 68.5 (2022): 352-360.
Neroeva, N. V., Neroev, V. V., Chesnokova, N. B., Katargina, L. A., Pavlenko, T. A., Beznos, O. V., Ilyukhin, P. A., Utkina, O. A., Lagarkova, M. A., Laktionov, P. P., Bogomazova, A. N., Kharitonov, A. E. (2022). Changes of α₂-macroglobulin activity and endothelin-1 concentration in tears of rabbits after transplantation of retinal pigment epithelium cells derived from the induced pluripotent stem cells. Biomeditsinskaya Khimiya, 68(5), 352-360.
References
Taylor A.W., Hsu S., Ng T.F. (2021) The role of retinal pigment epithelial cells in regulation of macrophages/microglial cells in retinal immunobiology. Front. Immunol., 12, 724601. CrossRef Scholar google search
Kharitonov A.E., Surdina A.V., Lebedeva O.S., Bogomazova A.N., Lagarkova M.A. (2018) Possibilities for using pluripotent stem cells for restoring damaged eye retinal pigment epithelium. Acta Naturae, 10(3), 30-39. CrossRef Scholar google search
Ahmed I., Johnston R.J., Singh M.S. (2021) Pluripotent stem cell therapy for retinal diseases. Ann. Translational Med., 9(15), 1279. CrossRef Scholar google search
Sharma R., Khristov V., Rising A., Jha B.S., Dejene R., Hotaling N., Li Y., Stoddard J., Stankewicz C., Wan Q. (2019) Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Science Translational Medicine, 11, 475. CrossRef Scholar google search
Sugita S., Futatsugi Y., Ishida M., Edo A., Takahashi M. (2020) Retinal pigment epithelial cells derived from induced pluripotent stem (iPS) cells suppress or activate T cells via costimulatory signals. Int. J. Mol. Sci., 21(18), 6507. CrossRef Scholar google search
Rajendran Nair D.S., Zhu D., Sharma R., Martinez Camarillo J.C., Bharti K., Hinton D.R., Humayun M.S., Thomas B.B. (2021) Long-term transplant effects of iPSC-RPE monolayer in immunodeficient RCS rats. Cells, 10(11), 2951. CrossRef Scholar google search
Sugita S., Mandai M., Kamao H., Takahashi M. (2021) Immunological aspects of RPE cell transplantation. Prog. Retin. Eye Res., 84, 100950. CrossRef Scholar google search
Fujii S., Sugita S., Futatsugi Y., Ishida M., Edo A., Makabe K., Kamao H., Iwasaki Y., Sakaguchi H., Hirami Y., Kurimoto Y., Takahashi M. (2020) A strategy for personalized treatment of iPS-retinal immune rejections assessed in cynomolgus monkey models. Int. J. Mol. Sci., 21(9), 3077. CrossRef Scholar google search
Petrash C.C., Palestine A.G., Canto-Soler M.V. (2021) Immunologic rejection of transplanted retinal pigmented epithelium: Mechanisms and strategies for prevention. Front. Immunol., 12, 621007. CrossRef Scholar google search
Pavlenko T.A., Kim A.R., Kurina A.Yu., Davydova N.G., Kolomojceva E.M., Chesnokova N.B., Ugriumov M.V. (2018) Endothelins and dopamine levels in tears for assessment of neurovascular disorders in glaucoma. Vestnik Oftalmologii, 134(4), 41-46. CrossRef Scholar google search
Neroeva N.V., Neroev V.V., Chesnokova N.B., Katargina L.A., Pavlenko T.A., Beznos O.V., Ilyukhin P.A., Utkina O.A. (2022) Method of revealing of the active experimental dectructive process in retina. Russian State Patent Agency Certificate, №2768588 of 24.03.2022. Scholar google search
Cater J.H., Wilson M.R., Wyatt A.R. (2019) Alpha-2-macroglobulin, a hypochlorite-regulated chaperone and immune system modulator. Oxid. Med. Cell. Longev., 2019, 5410657. CrossRef Scholar google search
Chesnokova N.B., Pavlenko T.A., Beznos O.V., Grigoryev A.V. (2020) The role of the endothelin system in the pathogenesis of eye diseases. Vestnik Oftalmologii, 136(1), 117-123. CrossRef Scholar google search
Bhogal R.H., Mirza D.F., Afford S.C., Mergental H. (2020) Biomarkers of liver injury during transplantation in an era of machine perfusion. Int. J. Mol. Sci., 21(5), 1578. CrossRef Scholar google search
Neroeva N.V., Neroev V.V., Ilyukhin P.A., Karmokova A.G., Losanova O.A., Ryabina M.V., Maybogin A.M. (2019) Method of simulating retinal pigment epithelium atrophy. Russian State Patent Agency Certificate, No. 2709247 of 26.08.2019. Scholar google search
Surdina A., Lebedeva O., Chernonosova V., Zhukova J., Kharitonov A., Bogomazova B., Kiselev S., Laktionov P., Lagarkova M. (2017) Obtaining polarized functional retinal pigment epithelium from IPSC son substrates mimicking the Bruch's membrane. FEBS J., 284(Suppl. 1), 377. CrossRef Scholar google search
Neroeva N.V., Neroev V.V., Katargina L.A., Ryabina M.V., Ilukhin P.A., Karmokova A.G., Losanova O.A., Majbogin A.M., Lagarkova M.A., Yeremeev A.V., Kharitonov A.E. (2019) Method of subretinal transplantation of retinal pigment epithelium (RPE) cells differentiated from human induced pluripotent stem cells, with atrophy of retinal pigment epithelium in experiment. Russian State Patent Agency Certificate, No. 2729937 of 15.11.2019. Scholar google search
Chuang W.H., Liu P.C., Hung C.Y., Lee K.K. (2014) Purification, characterization and molecular cloning of alpha-2-macroglobulin in cobia, Rachycentron canadum. Fish and Shellfish Immunology, 41(2), 346-355. CrossRef Scholar google search
Garcia-Ferrer I., Marrero A., Gomis-Rüth F.X., Goulas T. (2017) α2-Macroglobulins: Structure and function. Subcellular Biochem., 83, 149-183. CrossRef Scholar google search
Takashima Y., Takagi H., Takahashi M., Reinach P.S., Mircheff A.K., Warren D.W., Yoshimura N. (1996) Endothelin protein expression in tear glands of the rabbit. Curr. Eye Res., 15(7), 768-773. CrossRef Scholar google search
Gross V., Andus T., Tran-Thi T.A., Bauer J., Decker K., Heinrich P.C. (1984) Induction of acute phase proteins by dexamethasone in rat hepatocyte primary cultures. Exper. Cell Res., 151(1), 46-54. PMID: 6199220. CrossRef Scholar google search
Ramadori G., Knittel T., Schwögler S., Bieber F., Rieder H., Meyer zum Büschenfelde K.H. (1991) Dexamethasone modulates alpha 2-macroglobulin and apolipoprotein E gene expression in cultured rat liver fat-storing (Ito) cells. Hepatology, 14(5), 875-882. CrossRef Scholar google search
Calderón E., Gómez-Sánchez C.E., Cozza E.N., Zhou M., Coffey R.G., Lockey R.F., Prockop L.D., Szentivanyi A. (1994) Modulation of endothelin-1 production by a pulmonary epithelial cell line. I. Regulation by glucocorticoids. Biochem. Pharmacol., 48(11), 2065-2071. CrossRef Scholar google search
López-Ongil S., Senchak V., Saura M., Zaragoza C., Ames M., Ballermann B., Rodríguez-Puyol M., Rodríguez-Puyol D., Lowenstein C.J. (2000) Superoxide regulation of endothelinconverting enzyme. J. Biol. Chem., 275(34), 26423-26427. CrossRef Scholar google search
Fujii S., Sugita S., Futatsugi Y., Ishida M., Edo A., Makabe K., Kamao H., Iwasaki Y., Sakaguchi H., Hirami Y., Kurimoto Y., Takahashi M. (2020) A strategy for personalized treatment of iPS-retinal immune rejections assessed in cynomolgus monkey models. Int. J. Mol. Sci., 21(9), 3077. CrossRef Scholar google search