1. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia 2. Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia 3. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; Medical Faculty, St. Petersburg State University, St. Petersburg, Russia
Functional disorders in obesity are largely due to a decrease in tissue sensitivity to insulin and leptin. One of the ways to restore it is inhibition of protein phosphotyrosine phosphatase 1B (PTP1B) and T-cell protein phosphotyrosine phosphatase (TCPTP), negative regulators of the insulin and leptin signaling. Despite progress in the development of inhibitors of these phosphatases, commercial preparations based on them have not been developed yet, and the mechanisms of action are poorly understood. The aim of the work was to study the effect of new derivatives of 4-oxo-1,4-dihydrocinnoline (PI04, PI06, PI07) on the activity of PTP1B and TCPTP, as well as to study the effect of their five-day administration (i.p., 10 mg/kg/day) to Wistar rats with diet-induced obesity on body weight and fat, metabolic and hormonal parameters, and gene expression of phosphatase and insulin and leptin receptors in the liver. It has been shown that PI04 is a mild, low selective inhibitor of both phosphatases (PTP1B, IC50=3.42(2.60–4.51) μM; TCPTP, IC50=4.16(3.49–4.95) μM), while PI06 and PI07 preferentially inhibit PTP1B (IC50=3.55 (2.63–4.78) μM) and TCPTP (IC50=1.45(1.18–1.78) μM), respectively. PI04 significantly reduced food intake, body weight and fat, attenuated hyperglycemia, normalized glucose tolerance, basal and glucose-stimulated levels of insulin and leptin, and insulin resistance index. Despite the anorexigenic effect, PI06 and PI07 were less effective, having little effect on glucose homeostasis and insulin sensitivity. PI04 significantly increased the expression of the PTP1B and TCPTP genes and decreased the expression of the insulin and leptin receptor genes. PI06 and PI07 had little effect on these indicators. Thus, PI04, the inhibitor of PTP1B and TCPTP phosphatases, restored metabolic and hormonal parameters in obese rats with greater efficiency than inhibitors of PTP1B (PI06) and TCPTP (PI07). This indicates the prospect of creating mixed PTP1B/TCPTP inhibitors for correction of metabolic disorders.
Download PDF:
Keywords: protein phosphotyrosine phosphatase 1B, T-cell protein phosphotyrosine phosphatase, inhibitor, obesity, appetite, insulin, leptin, liver
Citation:
Derkach K.V., Zakharova I.O., Bakhtyukov A.A., Sorokoumov V.N., Kuznetsova V.S., Shpakov A.O. (2022) Characterization and biological activity of new 4-oxo-1,4-dihydrocinnoline-based inhibitors of the tyrosine phosphatase PTP1B and TCPTP. Biomeditsinskaya Khimiya, 68(6), 427-436.
Derkach K.V. et al. Characterization and biological activity of new 4-oxo-1,4-dihydrocinnoline-based inhibitors of the tyrosine phosphatase PTP1B and TCPTP // Biomeditsinskaya Khimiya. - 2022. - V. 68. -N 6. - P. 427-436.
Derkach K.V. et al., "Characterization and biological activity of new 4-oxo-1,4-dihydrocinnoline-based inhibitors of the tyrosine phosphatase PTP1B and TCPTP." Biomeditsinskaya Khimiya 68.6 (2022): 427-436.
Derkach, K. V., Zakharova, I. O., Bakhtyukov, A. A., Sorokoumov, V. N., Kuznetsova, V. S., Shpakov, A. O. (2022). Characterization and biological activity of new 4-oxo-1,4-dihydrocinnoline-based inhibitors of the tyrosine phosphatase PTP1B and TCPTP. Biomeditsinskaya Khimiya, 68(6), 427-436.
References
Dodd G.T., Xirouchaki C.E., Eramo M., Mitchell C.A., Andrews Z.B., Henry B.A., Cowley M.A., Tiganis T. (2019) Intranasal targeting of hypothalamic PTP1B and TCPTP reinstates leptin and insulin sensitivity and promotes weight loss in obesity. Cell Rep., 28(11), 2905-2922.e5. CrossRef Scholar google search
Köhn M. (2020) Turn and face the strange: A new view on phosphatases. ACS Cent. Sci., 6(4), 467-477. CrossRef Scholar google search
Liu R., Mathieu C., Berthelet J., Zhang W., Dupret J.M., Rodrigues Lima F. (2022) Human protein tyrosine phosphatase 1B (PTP1B): From structure to clinical inhibitor perspectives. Int. J. Mol. Sci., 23(13), 7027. CrossRef Scholar google search
Yip S.C., Saha S., Chernoff J. (2010) PTP1B: A double agent in metabolism and oncogenesis. Trends Biochem. Sci., 35(8), 442-449. CrossRef Scholar google search
Sorokoumov V.N., Shpakov A.O. (2017) Protein phosphotyrosine phosphatase 1B: Structure, function, role in the development of metabolic disorders and their correction by the enzyme inhibitors. J. Evol. Biochem. Physiol., 53(4), 259-270. CrossRef Scholar google search
Villamar-Cruz O., Loza-Mejía M.A., Arias-Romero L.E., Camacho-Arroyo I. (2021) Recent advances in PTP1B signaling in metabolism and cancer. Biosci. Rep., 41(11), BSR20211994. CrossRef Scholar google search
Krishnan N., Koveal D., Miller D.H., Xue B., Akshinthala S.D., Kragelj J., Jensen M.R., Gauss C.M., Page R., Blackledge M., Muthuswamy S.K., Peti W., Tonks N.K. (2014) Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol., 10(7), 558-566. CrossRef Scholar google search
Zhang Z.Y., Dodd G.T., Tiganis T. (2015) Protein tyrosine phosphatases in hypothalamic insulin and leptin signaling. Trends Pharmacol. Sci., 36(10), 661-674. CrossRef Scholar google search
Loh K., Fukushima A., Zhang X., Galic S., Briggs D., Enriori P.J., Simonds S., Wiede F., Reichenbach A. et al (2011) Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab., 14(5), 684-699. CrossRef Scholar google search
Wang Y.N., Liu S., Jia T., Feng Y., Xu X., Zhang D. (2021) T cell protein tyrosine phosphatase in glucose metabolism. Front. Cell Dev. Biol., 9, 682947. CrossRef Scholar google search
Li X., Wang L., Shi D. (2016) The design strategy of selective PTP1B inhibitors over TCPTP. Bioorg. Med. Chem., 24(16), 3343-3352. CrossRef Scholar google search
Javier G.M. (2021) Computational insight into the selective allosteric inhibition for PTP1B versus TCPTP: A molecular modelling study. J. Biomol. Struct. Dyn. 39(15), 5399-5410. CrossRef Scholar google search
Campos-Almazán M.I., Hernández-Campos A., Castillo R., Sierra-Campos E., Valdez-Solana M., Avitia-Domínguez C., Téllez-Valencia A. (2022) Computational methods in cooperation with experimental approaches to design protein tyrosine phosphatase 1B inhibitors in type 2 diabetes drug design: A review of the achievements of this century. Pharmaceuticals (Basel), 15(7), 866. CrossRef Scholar google search
Singh S., Singh Grewal A., Grover R., Sharma N., Chopra B., Kumar Dhingra A., Arora S., Redhu S., Lather V. (2022) Recent updates on development of protein-tyrosine phosphatase 1B inhibitors for treatment of diabetes, obesity and related disorders. Bioorg. Chem., 121, 105626. CrossRef Scholar google search
Zhi Y., Gao L.X., Jin Y., Tang C.L., Li J.Y., Li J., Long Y.Q. (2014) 4-Quinolone-3-carboxylic acids as cell-permeable inhibitors of protein tyrosine phosphatase 1B. Bioorg. Med. Chem., 22(14), 3670-3683. CrossRef Scholar google search
Zakharova I.O., Sorokoumov V.N., Bayunova L.V., Derkach K.V., Shpakov A.O. (2018) 4-Oxo-1,4-dihydrocinnoline derivative with phosphatase 1B inhibitor activity enhances leptin signal transduction in hypothalamic neurons. J. Evol. Biochem. Physiol., 54(4), 273-280. CrossRef Scholar google search
Welte S., Baringhaus K.H., Schmider W., Müller G., Petry S., Tennagels N. (2005) 6,8-Difluoro-4-methylumbiliferyl phosphate: A fluorogenic substrate for protein tyrosine phosphatases. Anal. Biochem., 338(1), 32-38. CrossRef Scholar google search
Derkach K.V., Bondareva V.M., Chistyakova O.V., Berstein L.M., Shpakov A.O. (2015) The effect of long-term intranasal serotonin treatment on metabolic parameters and hormonal signaling in rats with high-fat diet/low-dose streptozotocininduced type 2 diabetes. Int. J. Endocrinol., 2015, 245459. CrossRef Scholar google search
Derkach K., Zakharova I., Zorina I., Bakhtyukov A., Romanova I., Bayunova L., Shpakov A. (2019) The evidence of metabolic-improving effect of metformin inAy/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms this effect. PLOS One, 14(3), e0213779. CrossRef Scholar google search
Bakhtyukov A.A., Derkach K.V., Sorokoumov V.N., Stepochkina A.M., Romanova I.V., Morina I.Yu., Zakharova I.O., Bayunova L.V., Shpakov A.O. (2021) The effects of separate and combined treatment of male rats with type 2 diabetes with metformin and orthosteric and allosteric agonists of luteinizing hormone receptor on steroidogenesis and spermatogenesis. Int. J. Mol. Sci., 23(1), 198. CrossRef Scholar google search
Schmittgen T.D., Livak K.J. (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc., 3(6), 1101-1108. CrossRef Scholar google search
Yang Y., Tian J.Y., Ye F., Xiao Z. (2020) Identification of natural products as selective PTP1B inhibitors via virtual screening. Bioorg. Chem., 98, 103706. CrossRef Scholar google search
de-la-Cruz-Martínez L., Duran-Becerra C., González-Andrade M., Páez-Franco J.C. et al (2021) Indole- and pyrazole-glycyrrhetinic acid derivatives as PTP1B inhibitors: Synthesis, in vitro and in silico studies. Molecules, 26(14), 4375. CrossRef Scholar google search
Martínez-Aldino I.Y., Villaseca-Murillo M., Morales-Jiménez J., Rivera-Chávez J. (2021) Absolute configuration and protein tyrosine phosphatase 1B inhibitory activity of xanthoepocin, a dimeric naphtopyrone from Penicillium sp. IQ-429. Bioorg. Chem., 115, 105166. CrossRef Scholar google search
Wu J.M., Zhou Q.Q., Xie X.Y., Xu J.B. (2021) Khayalactoneand phragmalin-type limonoids with PTP1B inhibitory activity from Trichilia sinensis Bentv. Fitoterapia, 154, 105025. CrossRef Scholar google search
Yamazaki H., Tsuge H., Takahashi O., Uchida R. (2021) Germacrane sesquiterpenes from leaves of Eupatorium chinense inhibit protein tyrosine phosphatase. Bioorg. Med. Chem. Lett., 53, 128422. CrossRef Scholar google search
Li X., Niu M., Wang A., Lu L., Englert U., Feng S., Zhang L., Yuan C. (2021) Synthesis, structure and in vitro biological properties of a new copper(II) complex with 4-{[3-(pyridin-2-yl)-1H-pyrazol-1-yl]methyl}benzoic acid. Acta Crystallographica. Section C, Structural Chemistry, 77(Pt 10), 641-648. CrossRef Scholar google search
Ma Y., Ding T.T., Liu Y.Y., Zheng Z.H., Sun S.X., Zhang L.S., Zhang H., Lu X.H., Cheng X.C., Wang R.L. (2021) Design, synthesis, biological evaluation and molecular dynamics simulation studies of imidazolidine-2,4-dione derivatives as novel PTP1B inhibitors. Biochem. Biophys. Res. Commun., 579, 40-46. CrossRef Scholar google search
Ji Y., Zhou Q., Liu G., Zhu T., Wang Y., Fu Y., Li Y., Li R., Zhang X., Dong M., Sauriol F., Gu Y., Shi Q., Lu X., Ni Z. (2021) New protein tyrosine phosphatase inhibitors from fungus Aspergillus gorakhpurensis F07ZB1707. RSC Adv., 11(17), 10144-10153. CrossRef Scholar google search
Nian Q., Berthelet J., Zhang W., Bui L.C., Liu R., Xu X., Duval R., Ganesan S., Leger T., Chomienne C., Busi F., Guidez F., Dupret J.M., Rodrigues Lima F. (2019) T-cell protein tyrosine phosphatase is irreversibly inhibited by etoposide-quinone, a reactive metabolite of the chemotherapy drug etoposide. Mol. Pharmacol., 96(2), 297-306. CrossRef Scholar google search
Sharma B., Xie L., Yang F., Wang W., Zhou Q., Xiang M., Zhou S., Lv W., Jia Y., Pokhrel L., Shen J., Xiao Q., Gao L., Deng W. (2020) Recent advance on PTP1B inhibitors and their biomedical applications. Eur. J. Med. Chem., 199, 17376. CrossRef Scholar google search
Kyriakou E., Schmidt S., Dodd G.T., Pfuhlmann K., Simonds S.E., Lenhart D., Geerlof A., Schriever S.C., de Angelis M., Schramm K.W., Plettenburg O., Cowley M.A., Tiganis T., Tschöp M.H., Pfluger P.T., Sattler M., Messias A.C. (2018) Celastrol promotes weight loss in diet-induced obesity by inhibiting the protein tyrosine phosphatases PTP1B and TCPTP in the hypothalamus. J. Med. Chem., 61(24), 11144-11157. CrossRef Scholar google search
Sharma Y., Ahmad A., Yavvari P.S., Kumar Muwal S., Bajaj A., Khan F. (2019) Targeted SHP-1 silencing modulates the macrophage phenotype, leading to metabolic improvement in dietary obese mice. Mol. Ther. Nucleic Acids., 16, 626-636. CrossRef Scholar google search
Xu E., Charbonneau A., Rolland Y., Bellmann K., Pao L., Siminovitch K.A., Neel B.G., Beauchemin N., Marette A. (2012) Hepatocyte-specific Ptpn6 deletion protects from obesity-linked hepatic insulin resistance. Diabetes, 61(8), 1949-1958. CrossRef Scholar google search
Krüger J., Wellnhofer E., Meyborg H., Stawowy P., Östman A., Kintscher U., Kappert K. (2016) Inhibition of Src homology 2 domain-containing phosphatase 1 increases insulin sensitivity in high-fat diet-induced insulin-resistant mice. FEBS Open Bio., 6(3), 179-189. CrossRef Scholar google search
Meier D.A., Hennes M.M., McCune S.A., Kissebah A.H. (1995) Effects of obesity and gender on insulin receptor expression in liver of SHHF/Mcc-FAcp rats. Obes. Res., 3(5), 465-470. CrossRef Scholar google search
Liu Z.J., Bian J., Liu J., Endoh A. (2007) Obesity reduced the gene expressions of leptin receptors in hypothalamus and liver. Horm. Metab. Res., 39(7), 489-494. CrossRef Scholar google search
Munkong N., Thim-Uam A., Pengnet S., Hansakul P., Somparn N., Naowaboot J., Tocharus J., Tocharus C. (2022) Effects of red rice bran extract on high-fat diet-induced obesity and insulin resistance in mice. Prev. Nutr. Food. Sci., 27(2), 180-187. CrossRef Scholar google search
Wrann C.D., Ehmer U., Lautenbach A., Kuhlmann S., Nave H. (2010) Obesity and NK cells affect the expression of the long form of the leptin receptor Ob-Rb in liver of F344 rats. Exp. Toxicol. Pathol., 62(1), 1-8. CrossRef Scholar google search