Downregulation of α5β1 integrin in the SK-Mel-147 human melanoma culture model sharply inhibits the phenotypic manifestations of tumor progression: cell proliferation and clonal activity. This was accompanied by a 2-3-fold increase in the content of SA-β-Gal positive cells thus indicating an increase in the cellular senescence phenotype. These changes were accompanied by a significant increase in the activity of p53 and p21 tumor suppressors and components of the PI3K/Akt/mTOR/p70 signaling pathway. Pharmacological inhibition of mTORC1 reduced the content of SA-β-Gal positive cells in the population of α5β1-deficient SK-Mel-147 cells. A similar effect was observed with pharmacological and genetic inhibition of the activity of Akt1, one of the three Akt protein kinase isoenzymes; suppression of other Akt isozymes did not affect melanoma cell senescence. The results presented in this work and previously obtained indicate that α5β1 shares with other integrins of the β1 family the function of cell protection from senescence. This function is realized via regulation of the PI3K/Akt1/mTOR signaling pathway, in which Akt1 exhibits a non-canonical activity.
Download PDF:
Keywords: tumor progression, cellular senescence, integrins, signaling, non-canonic function of Akt proteinkinase
Citation:
Kozlova N.I., Morozevich G.E., Gevorkian N.M., Kurbatov L.K., Berman A.E. (2023) Implication of integrin α5β1 in senescence of SK-Mel-147 human melanoma cells. Biomeditsinskaya Khimiya, 69(3), 156-164.
Kozlova N.I. et al. Implication of integrin α5β1 in senescence of SK-Mel-147 human melanoma cells // Biomeditsinskaya Khimiya. - 2023. - V. 69. -N 3. - P. 156-164.
Kozlova N.I. et al., "Implication of integrin α5β1 in senescence of SK-Mel-147 human melanoma cells." Biomeditsinskaya Khimiya 69.3 (2023): 156-164.
Kozlova, N. I., Morozevich, G. E., Gevorkian, N. M., Kurbatov, L. K., Berman, A. E. (2023). Implication of integrin α5β1 in senescence of SK-Mel-147 human melanoma cells. Biomeditsinskaya Khimiya, 69(3), 156-164.
References
Kozlova N.I., Morozevich G.E., Shtil A.A., Berman A.E. (2004) Multidrug-resistant tumor cells with decreased malignancy: A role for integrin αvβ3. Biochem. Biophys. Res. Commun., 316, 1173-1177. CrossRef Scholar google search
Morozevich G.E., Kozlova N.I., Cheglakov I.B., Ushakova N.A., Preobrazhenskaya M.E., Berman A.E. (2008) Implication of α5β1 integrin in invasion of drug-resistant MCF-7/ADR breast carcinoma cells: A role for MMP-2 collagenase. Biochemistry (Moscow), 73(7), 791-796. CrossRef Scholar google search
Morozevich G., Kozlova N., Cheglakov I., Ushakova N., Berman A. (2009) Integrin α5β1 controls invasion of human breast carcinoma cells by direct and indirect modulation of MMP-2 collagenase activity. Cell Cycle, 15, 2219-2225. CrossRef Scholar google search
Kozlova N.I., Morozevich G.E., Ushakova N.A., Berman A.E. (2019) Implication of integrin α2β1 in anoikis of SK-Mel-147 human melanoma cells: A non-canonical function of Akt protein kinase. Oncotarget, 10, 1829-1839. CrossRef Scholar google search
Kozlova N.I., Morozevich G.E., Gevorkian N.M., Berman A.E. (2020) Implication of integrins α3β1 and α5β1 in invasion and anoikis of SK-Mel-147 human melanoma cells: Non-canonical functions of protein kinase Akt. Aging (Albany NY), 12, 24345-24356. CrossRef Scholar google search
Kozlova N.I., Morozevich G.E., Berman A.E. (2021) Implication of integrin α2β1 in senescence of SK-Mel-147 human melanoma cells. Aging (Albany NY), 13, 18006-18017. CrossRef Scholar google search
Morozevich G.E., Kozlova N.I., Preobrazhenskaya M.E., Ushakova N.A., Eltsov I.A., Shtil A.A., Berman A.E. (2006) The role of β1 integrin subfamily in anchorage-dependent apoptosis of breast carcinoma cells differing in multidrug resistance. Biochemistry (Moscow), 71(5), 489-495. CrossRef Scholar google search
Kozlova N.I., Morozevich G.E., Ushakova N.A., Berman A.E. (2018) Implication of integrin α2β1 in proliferation and invasion of human breast carcinoma and melanoma cells: Noncanonical function of Akt protein kinase. Biochemistry (Moscow), 83(6), 738-745. CrossRef Scholar google search
Morozevich G.E., Kozlova N.I., Gevorkian N.M., Berman A.E. (2022) Integrin α3β1 signaling in regulation of the SK-Mel-147 melanoma cell senescence. Biomeditsinskaya Khimiya, 68(1), 39-46. CrossRef Scholar google search
Franovic A., Elliott K.C., Seguin L., Camargo M.F., Weis S.M., Cheresh D.A. (2015) Glioblastomas require integrin αvβ3/PAK4 signaling to escape senescence. Cancer Res., 75, 466-473. CrossRef Scholar google search
Tun X., Wang E.J., Gao Z., Lundberg K., Xu R., Hu D. (2023) Integrin β3-mediated cell senescence associates with gut inflammation and intestinal degeneration in models of Alzheimer's disease. Int. J. Mol. Sci., 24(6), 5697. CrossRef Scholar google search
Rapisarda V., Borghesan M., Miguela V., Encheva V., Snijders A.P., Lujambio A., O'Loghlen A. (2017) Integrin β3 regulates cellular senescence by activating the TGF-β pathway. Cell Rep., 18, 2480-2493. CrossRef Scholar google search
Mancini M., Saintigny G., Mahé C., Annicchiarico-Petruzzelli M., Melino G., Candi E. (2012) MicroRNA-152 and -181a participate in human dermal fibroblasts senescence acting on cell adhesion and remodeling of the extra-cellular matrix. Aging (Albany NY), 4, 843-853. CrossRef Scholar google search
Lau L.F. (2011) CCN1/CYR61: The very model of a modern matricellular protein. Cell Mol. Life Sci., 68, 149-163. CrossRef Scholar google search
Jun J.I., Lau L.F. (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nature Cell Biology, 12, 676-685. CrossRef Scholar google search
Nakagawa K., Nagano T., Katasho R., Iwasaki T., Kamada S. (2022) Integrin β1 transduces the signal for LY6D-induced macropinocytosis and mediates senescence-inducing stress-evoked vacuole formation via FAK. FEBS Lett., 596, 2768-2780. CrossRef Scholar google search
Feoktistova M., Geserick P., Leverkus M. (2016) Crystal violet assay for determining viability of cultured cells. Cold Spring Harb. Protoc., 4, pdb.prot087379. CrossRef Scholar google search
Morozevich G.E., Kozlova N.I., Susova O.Yu., Karalkin P.A., Berman A.E. (2015) Implication of α2β1 integrin in anoikis of MCF-7 human breast carcinoma cells. Biochemistry (Moscow), 80, 97-103. CrossRef Scholar google search
Welte Y., Adjaye J., Lehrach H.R., Regenbrecht C.R. (2010) Cancer stem cells in solid tumors: Elusive or illusive? Cell Commun. Signal., 8, 6. CrossRef Scholar google search
Deschênes-Simard X., Kottakis F., Meloche S., Ferbeyre G. (2014) ERKs in cancer: Friends or foes? Cancer Res., 74, 412-419. CrossRef Scholar google search
Mijit M., Caracciolo V., Melillo A., Amicarelli F., Giordano A. (2020) Role of p53 in the regulation of cellular senescence. Biomolecules, 10, 420. CrossRef Scholar google search
Xu Y., Li N., Xiang R., Sun P. (2014) Emerging roles of the p38 MAPK and PI3K/AKT/mTOR pathways in oncogene-induced senescence. Trends Biochem. Sci., 39, 268-276. CrossRef Scholar google search
Weichhart T. (2018) mTOR as regulator of lifespan, aging, and cellular senescence: A mini-review. Gerontology, 64, 127-134. CrossRef Scholar google search
Miyauchi H., Minamino T., Tateno K., Kunieda T., Toko H., Komuro I. (2004) Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J., 23, 212-220. CrossRef Scholar google search