The search and creation of innovative antimicrobial drugs, acting against resistant and multiresistant strains of bacteria and fungi, are one of the most important tasks of modern bioorganic chemistry and pharmaceuticals. Since iron is essential for the vital activity of almost all organisms, including mammals and bacteria, the proteins involved in its metabolism can serve as potential targets in the development of new promising antimicrobial agents. Such targets include endogenous mammalian biomolecules, heme oxygenases, siderophores, protein 24p3, as well as bacterial heme oxygenases and siderophores. Other proteins that are responsible for the delivery of iron to cells and its balance between bacteria and the host organism also attract certain particular interest. The review summarizes data on the development of inhibitors and inducers (activators) of heme oxygenases, selective for mammals and bacteria, and considers the characteristic features of their mechanisms of action and structure. Based on the reviewed literature data, it was concluded that the use of hemin, the most powerful hemooxygenase inducer, and its derivatives as potential antimicrobial and antiviral agents, in particular against COVID-19 and other dangerous infections, would be a promising approach. In this case, an important role is attributed to the products of hemin degradation formed by heme oxygenases in vitro and in vivo. Certain attention has been paid to the data on the antimicrobial action of iron-free protoporphyrinates, namely complexes with Co, Ga, Zn, Mn, their advantages and disadvantages compared to hemin. Modification of the well-known antibiotic ceftazidime with a siderophore molecule increased its effectiveness against resistant bacteria.
Download PDF:
Keywords: iron, heme oxygenase, siderophores, antibacterial and antiviral activity, hemin, protein 24p3
Citation:
Blagodarov S.V., Zheltukhina G.A., Nebolsin V.E. (2023) Iron metabolism in the cell as a target in the development of potential antimicrobial and antiviral agents. Biomeditsinskaya Khimiya, 69(4), 199-218.
Blagodarov S.V. et al. Iron metabolism in the cell as a target in the development of potential antimicrobial and antiviral agents // Biomeditsinskaya Khimiya. - 2023. - V. 69. -N 4. - P. 199-218.
Blagodarov S.V. et al., "Iron metabolism in the cell as a target in the development of potential antimicrobial and antiviral agents." Biomeditsinskaya Khimiya 69.4 (2023): 199-218.
Blagodarov, S. V., Zheltukhina, G. A., Nebolsin, V. E. (2023). Iron metabolism in the cell as a target in the development of potential antimicrobial and antiviral agents. Biomeditsinskaya Khimiya, 69(4), 199-218.
References
Anderson G.J., Frazer D.M. (2017) Current understanding of iron homeostasis. Am. J. Clin. Nutr., 106, 1559-1566. CrossRef Scholar google search
Ratledge C., Dover L.G. (2000) Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol., 54, 881-941. CrossRef Scholar google search
Mironov A.Yu., Leonov V.V. (2016) Iron, virulence, and intermicrobial interactions of opportunistic pathogens, Uspekhi Sovremennoy Biologii, 136, 301-310. Scholar google search
Ahanger A.A., Prawez S., Leo M.D., Kathirvel K., Kumar D., Tandan S.K., Malik J.K. (2010) Pro-healing potential of hemin: An inducer of heme oxygenase-1. Eur. J. Pharmacol., 645, 165-170. CrossRef Scholar google search
Sato T., Yamawaki K. (2019) Cefiderocol: Discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin. Infect. Dis., 69, S538-S543. CrossRef Scholar google search
Kjeldsen L., Johnsen A.H., Sengeløv H., Borregaard N. (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J. Biol. Chem., 268, 10425-10432. CrossRef Scholar google search
Jaberi S.A., Cohen A., d'Souza C., Abdulrazzaq Y.M., Ojha S., Bastaki S., Adeghate E.A. (2021) Lipocalin-2: Structure, function, distribution and role in metabolic disorders. Biomedicine Pharmacotherapy, 142, 112002. CrossRef Scholar google search
Goetz D.H., Holmes M.A., Borregaard N., Bluhm M.E., Raymond K.N., Strong R.K. (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell, 10, 1033-1043. CrossRef Scholar google search
Devireddy L.R., Hart D.O., Goetz D.H., Green M.R. (2010) A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell, 141, 1006-1017. CrossRef Scholar google search
Liu Z., Ciocea A., Devireddy L. (2014) Endogenous siderophore 2,5-dihydroxybenzoic acid deficiency promotes anemia and splenic iron overload in mice. Mol. Cell. Biol., 34, 2533-2546. CrossRef Scholar google search
Devireddy L.R., Gazin C., Zhu X., Green M.R. (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell, 123, 1293-130. CrossRef Scholar google search
Liu Z., Reba S., Chen W.D., Porwal S.K., Boom W.H., Petersen R.B., Rojas R., Viswanathan R., Devireddy L. (2014) Regulation of mammalian siderophore 2,5-DHBA in the innate immune response to infection. J. Exp. Med., 211(6), 1197-1213. CrossRef Scholar google search
Leonov V.V., Mironov A.Yu., Anan'ina I.V., Rubalskaya E.E., Sentyurova L.G. (2016) Siderophores of microbes: Structure, properties, and functions. Astrakhan Medical Journal, 10(4), 24-37. Scholar google search
Chipperfield J.R., Ratledge C. (2000) Salicylic acid is not a bacterial siderophore: A theoretical study. Biometals, 13, 165-168. CrossRef Scholar google search
Faraldo-Gómez J.D., Sansom M.S. (2003) Acquisition of siderophores in gram-negative bacteria. Nat. Rev. Mol. Cell Biol., 4, 105-116. CrossRef Scholar google search
Krewulak K.D., Vogel H.J. (2008) Structural biology of bacterial iron uptake. Biochim. Biophys. Acta., 1778, 1781-1804. CrossRef Scholar google search
Kramer J., Özkaya Ö., Kümmerli R. (2020) Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol., 18, 152-163. CrossRef Scholar google search
Wilson B.R., Bogdan A.R., Miyazawa M., Hashimoto K., Tsuji Y. (2016) Siderophores in iron metabolism: From mechanism to therapy potential. Trends Mol. Med., 22(12), 1077-1090. CrossRef Scholar google search
Holden V.I., Lenio S., Kuick R., Ramakrishnan S.K., Shah Y.M., Bachman M.A. (2014) Bacterial siderophores that evade or overwhelm lipocalin 2 induce hypoxia inducible factor 1α and proinflammatory cytokine secretion in cultured respiratory epithelial cells. Infect. Immun., 82, 3826-3836. CrossRef Scholar google search
Bachman M.A., Miller V.L., Weiser J.N. (2009) Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLoS Pathogens, 5, 1000622. CrossRef Scholar google search
Bakhshandeh Z., Halabian R., Imani Fooladi A.A., Jahanian-Najafabadi A., Jalili M.A., Roudkenar M.H. (2014) Recombinant human lipocalin 2 acts as an antibacterial agent to prevent platelet contamination. Hematology, 19, 487-492. CrossRef Scholar google search
Tanaka S., Hayashi T., Tateyama H., Matsumura K., Hyon S.H., Hirayama F. (2010) Application of the bactericidal activity of ε-poly-L-lysine to the storage of human platelet concentrates. Transfusion, 50, 932-940. CrossRef Scholar google search
Guo B.X., Wang Q.Q., Li J.H., Gan Z.S., Zhang X.F., Wang Y.Z., Du H.H. (2017) Lipocalin 2 regulates intestine bacterial survival by interplaying with siderophore in a weaned piglet model of Escherichia coli infection. Oncotarget, 8, 65386-65396. CrossRef Scholar google search
Mosialou I., Shikhel S., Liu J.M., Maurizi A., Luo N., He Z., Huang Y., Zong H., Friedman R.A., Barasch J., Lanzano P., Deng L., Leibel R.L., Rubin M., Nickolas T., Chung W., Zeltser L.M., Williams K.W., Pessin J.E., Kousteni S. (2017) Mc4r-dependent suppression of appetite by bone-derived lipocalin 2. Nature, 543, 385-390. CrossRef Scholar google search
Liu Z., Reba S., Chen W.D., Porwal S.K., Boom W.H., Petersen R.B., Rojas R., Viswanathan R., Devireddy L. (2014) Regulation of mammalian siderophore 2,5-DHBA in the innate immune response to infection. J. Exp. Med., 211(6), 1197-1213. CrossRef Scholar google search
Miethke M., Skerra A. (2010) Neutrophil gelatinase-associated lipocalin expresses antimicrobial activity by interfering with L-norepinephrine-mediated bacterial iron acquisition. Antimicrob. Agents Chemother., 54, 1580-1589. CrossRef Scholar google search
Freestone P.P., Lyte M., Neal C.P., Maggs A.F., Haigh R.D., Williams P.H. (2000) The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J. Bacteriol., 182, 6091-6098. CrossRef Scholar google search
Freestone P.P., Williams P.H., Haigh R.D., Maggs A.F., Neal C.P., Lyte M. (2002) Growth stimulation of intestinal commensal Escherichia coli by catecholamines: A possible contributory factor in trauma-induced sepsis. Shock, 18, 465-470. CrossRef Scholar google search
Williams P.H., Rabsch W., Methner U., Voigt W., Tschäpe H., Reissbrodt R. (2006) Catecholate receptor proteins in Salmonella enterica: Role in virulence and implications for vaccine development. Vaccine, 24, 3840-3844. CrossRef Scholar google search
Kingsley R., Rabsch W., Roberts M., Reissbrodt R., Williams P.H. (1996) TonB-dependent iron supply in Salmonella by alpha-ketoacids and alpha-hydroxyacids. FEMS Microbiol. Lett., 140, 65-70. CrossRef Scholar google search
Golonka R., Yeoh B.S., Vijay-Kumar M. (2019) The iron tug-of-war between bacterial siderophores and innate immunity. J. Innate. Immun., 11(3), 249-262. CrossRef Scholar google search
Tracz M.J., Alam J., Nath K.A. (2007) Physiology and pathophysiology of heme: Implications for kidney disease. J. Am. Soc. Nephrol., 18, 414-420. CrossRef Scholar google search
Li C., Stocker R. (2009) Heme oxygenase and iron: From bacteria to humans. Redox Rep., 14, 95-101. CrossRef Scholar google search
Skaar E.P., Gaspar A.H., Schneewind O. (2004) IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus. J. Biol. Chem., 279, 436-443. CrossRef Scholar google search
Wilks A., Ikeda-Saito M. (2014) Heme utilization by pathogenic bacteria: Not all pathways lead to biliverdin. Acc. Chem. Res., 47, 2291-2298. CrossRef Scholar google search
Lyles K.V., Eichenbaum Z. (2018) From host heme to iron: The expanding spectrum of heme degrading enzymes used by pathogenic bacteria. Front. Cell. Infect. Microbiol., 8, 198. CrossRef Scholar google search
Matsui T., Nambu S., Ono Y., Goulding C.W., Tsumoto K., Ikeda-Saito M. (2013) Heme degradation by Staphylococcus aureus IsdG and IsdI liberates formaldehyde rather than carbon monoxide. Biochemistry, 2, 3025-3027. CrossRef Scholar google search
Duong T., Park K., Kim T., Kang S.W., Hahn M.J., Hwang H.Y., Jang I., Oh H.B., Kim K.K. (2014) Structural and functional characterization of an Isd-type haem-degradation enzyme from Listeria monocytogenes. Acta. Crystallogr. D Biol. Crystallogr., 70, 615-626. CrossRef Scholar google search
Furci L.M., Lopes P., Eakanunkul S., Zhong S., MacKerell A.D. Jr., Wilks A. (2007) Inhibition of the bacterial heme oxygenases from Pseudomonas aeruginosa and Neisseria meningitidis: Novel antimicrobial targets. J. Med. Chem., 50, 3804-3813. CrossRef Scholar google search
Singh N., Ahmad Z., Baid N., Kumar A. (2018) Host heme oxygenase-1: Friend or foe in tackling pathogens? IUBMB Life, 70, 869-880. CrossRef Scholar google search
Li C., Hossieny P., Wu B.J., Qawasmeh A., Beck K., Stocker R. (2007) Pharmacologic induction of heme oxygenase-1. Antioxid. Redox Signal., 9, 2227-2239. CrossRef Scholar google search
Bharucha A.E., Kulkarni A., Choi K.M., Camilleri M., Lempke M., Brunn G.J., Gibbons S.J., Zinsmeister A.R., Farrugia G. (2010) First-in-human study demonstrating pharmacological activation of heme oxygenase-1 in humans. Clin. Pharmacol. Ther., 87, 187-190. CrossRef Scholar google search
Nitzan Y., Ladan H., Gozansky S., Malik Z. (1987) Characterization of hemin antibacterial action on Staphylococcus aureus. FEMS Microbiol. Lett., 48, 401-406. CrossRef Scholar google search
Ladan H., Nitzan Y., Malik Z. (1993) The antibacterial activity of haemin compared with cobalt, zinc and magnesium protoporphyrin and its effect on potassium loss and ultrastructure of Staphylococcus aureus. FEMS Microbiol. Lett., 112, 173-177. CrossRef Scholar google search
Blagodarov S.V., Zheltukhina G.A., Yeremin S.V., Babicheva E.S., Mirchink E.P., Nebolsin V.E. (2018) The effect of elongation of a peptide substituent with ArgSer motif on the antimicrobial properties of hemin derivatives. J. Porphyrins Phthalocyanines, 22, 1060-1071. CrossRef Scholar google search
Blagodarov S.V., Zheltukhina A.G., Romanova Yu.M., Alekseeva N.V., Iskhakova L.D., Semashko M.I., Tolordava E.R., Nebolsinr V.E. (2022) Improving the synthesis of hemin derivatives and their effect on bacterial biofilms. J. Porphyrins Phthalocyanines, 26, 242-252. CrossRef Scholar google search
Okorochenkov S.A., Zheltukhina G.A., Mirchink E.P., Isakova E.B., Feofanov A.V., Nebolsin V.E. (2013) Synthesis, anti-MRSA, and anti-VRE activity of hemin conjugates with amino acids and branched peptides. Chem. Biol. Drug Des., 82, 410-417. CrossRef Scholar google search
Mukhammadieva G.F., Karimov D.O., Bakirov A.B., Kutlina T.G., Valova Ya.V., Kudoyarov E.R., Khusnutdinova N.Yu. (2019) Hmox1 gene expression in the liver of rats with experimental tetrachloromethane hepatitis and its change under the influence of hepatoprotectors. Toxicological Review, 6, 45-49. CrossRef Scholar google search
Grosser N., Hemmerle A., Berndt G., Erdmann K., Hinkelmann U., Schürger S., Wijayanti N., Immenschuh S., Schröder H. (2004) The antioxidant defense protein heme oxygenase 1 is a novel target for statins in endothelial cells. Free Radic. Biol. Med., 37, 2064-2071. CrossRef Scholar google search
Hsu M., Muchova L., Morioka I., Wong R.J., Schröder H., Stevenson D.K. (2006) Tissue-specific effects of statins on the expression of heme oxygenase-1 in vivo. Biochem. Biophys. Res. Commun., 343, 738-744. CrossRef Scholar google search
Bauer I., Raupach A. (2019) The role of heme oxygenase-1 in remote ischemic and anesthetic organ conditioning. Antioxidants (Basel), 8, 403. CrossRef Scholar google search
Hornuss C., Firsching M.D., Dolch M.E., Martignoni A., Peraud A., Briegel J. (2010) Long-term isoflurane therapy for refractory bronchospasm associated with herpes simplex pneumonia in a heart transplant patient. case reports in medicine, 2010, 746263. CrossRef Scholar google search
Nacoti M., Colombo J., Fochi O., Bonacina D., Fazzi F., Bellani G., Bonanomi E. (2018) Sevoflurane improves respiratory mechanics and gas exchange in a case series of infants with severe bronchiolitis-induced acute respiratory distress syndrome. Clinical Case Reports, 6, 920-925. CrossRef Scholar google search
Godman C.A., Chheda K.P., Hightower L.E., Perdrizet G., Shin D.G., Giardina C. (2010) Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones, 15, 431-442. CrossRef Scholar google search
Wang R., Shamloul R., Wang X., Meng Q., Wu L. (2006) Sustained normalization of high blood pressure in spontaneously hypertensive rats by implanted hemin pump. Hypertension, 48, 685-692. CrossRef Scholar google search
Aziz N.M., Kamel M.Y., Rifaai R.A. (2017) Effects of hemin, a heme oxygenase-1 inducer in L-arginine-induced acute pancreatitis and associated lung injury in adult male albino rats. Endocrine Regulations, 51, 20-30. CrossRef Scholar google search
Collino M., Pini A., Mugelli N., Mastroianni R., Bani D., Fantozzi R., Papucci L., Fazi M., Masini E. (2013) Beneficial effect of prolonged heme oxygenase 1 activation in a rat model of chronic heart failure. Dis. Model. Mech., 6, 1012-1020. CrossRef Scholar google search
Kumar D., Jena G.R., Ram M., Lingaraju M.C., Singh V., Prasad R., Kumawat S., Kant V., Gupta P., Tandan S.K., Kumar D. (2019) Hemin attenuated oxidative stress and inflammation to improve wound healing in diabetic rats. Naunyn-Schmiedebergs Arch. Pharmacol., 392, 1435-1445. CrossRef Scholar google search
Gbotosho O.T., Kapetanaki M.G., Ghosh S., Villanueva F.S., Ofori-Acquah S.F., Kato G.J. (2020) Heme induces IL-6 and cardiac hypertrophy genes transcripts in sickle cell mice. Front. Immunol., 11, 1910. CrossRef Scholar google search
Zaki M.H., Fujii S., Okamoto T., Islam S., Khan S., Ahmed K.A., Sawa T., Akaike T. (2009) Cytoprotective function of heme oxygenase 1 induced by a nitrated cyclic nucleotide formed during murine salmonellosis. J. Immunol., 182, 3746-3756. CrossRef Scholar google search
Stojiljkovic I., Kumar V., Srinivasan N. (1999) Non-iron metalloporphyrins: Potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria. Mol. Microbiol., 31, 429-442. CrossRef Scholar google search
Sebastián V.P., Moreno-Tapia D., Melo-González F., Hernández-Cáceres M.P., Salazar G.A., Pardo-Roa C., Farías M.A., Vallejos O.P., Schultz B.M., Morselli E., Álvarez-Lobos M.M., González P.A., Kalergis A.M., Bueno S.M. (2022) Limited heme oxygenase contribution to modulating the severity of Salmonella enterica serovar typhimurium infection. Antioxidants, 11, 1040. CrossRef Scholar google search
Mohri T., Ogura H., Koh T., Fujita K., Sumi Y., Yoshiya K., Matsushima A., Hosotsubo H., Kuwagata Y., Tanaka H., Shimazu T., Sugimoto H. (2006) Enhanced expression of intracellular heme oxygenase-1 in deactivated monocytes from patients with severe systemic inflammatory response syndrome. J. Trauma, 61, 616-623. CrossRef Scholar google search
Czaikoski P.G., Nascimento D.C., Sфnego F., de Freitas A., Turato W.M., de Carvalho M.A., Santos R.S., de Oliveira G.P., dos Santos Samary C., Tefe-Silva C., Alves-Filho J.C., Ferreira S.H., Rossi M.A., Rocco P.R., Spiller F., Cunha F.Q. (2013) Heme oxygenase inhibition enhances neutrophil migration into the bronchoalveolar spaces and improves the outcome of murine pneumonia-induced sepsis. Shock, 39, 389-396. CrossRef Scholar google search
Yoon S.J., Kim S.J., Lee S.M. (2017) Overexpression of HO-1 contributes to sepsis-induced immunosuppression by modulating the Th1/Th2 balance and regulatory T-cell function. J. Infect. Dis., 215, 1608-1618. CrossRef Scholar google search
Costa D.L., Namasivayam S., Amaral E.P., Arora K., Chao A., Mittereder L.R., Maiga M., Boshoff H.I., Barry C.E. 3rd, Goulding C.W., Andrade B.B., Sher A. (2016) Pharmacological inhibition of host heme oxygenase-1 suppresses Mycobacterium tuberculosis infection in vivo by a mechanism dependent on T lymphocytes. mBio, 7, e01675-16. CrossRef Scholar google search
Willix J.L., Stockton J.L., Olson R.M., Anderson P.E., Anderson D.M. (2020) Activation of heme oxygenase expression by cobalt protoporphyrin treatment prevents pneumonic plague caused by inhalation of Yersinia pestis. Antimicrob. Agents Chemother, 64, e01819-19. CrossRef Scholar google search
Tsutsui K., Mueller G.C. (1987) Hemin inhibits virion-associated reverse transcriptase of murine leukemia virus. Biochem. Biophys. Res. Commun., 149, 628-634. CrossRef Scholar google search
Devadas K., Dhawan S. (2006) Hemin activation ameliorates HIV-1 infection via heme oxygenase-1 induction. J. Immunol., 176, 4252-4257. CrossRef Scholar google search
Centers for disease control and prevention. Retrieved 27 July 2022 from https://www.cdc.gov/globalhealth/ immunization/diseases/hepatitis-b/data/fast-facts.html #:~:text=Hepatitis%20B%20affects%20approximately %20296,infections%20progress%20to%20liver%20cancer. Scholar google search
Protzer U., Seyfried S., Quasdorff M., Sass G., Svorcova M., Webb D., Bohne F., Hösel M., Schirmacher P., Tiegs G. (2007) Antiviral activity and hepatoprotection by heme oxygenase-1 in hepatitis B virus infection. Gastroenterology, 133, 1156-6115. CrossRef Scholar google search
World health organization. Retrieved 24 June 2022 from https://www.who.int/news-room/fact-sheets/detail/hepatitis-c #:~:text=Globally%2C%20an%20estimated%2058% 20million, with%20chronic%20hepatitis%20C%20infection. Scholar google search
Zhu Z., Wilson A.T., Luxon B.A., Brown K.E., Mathahs M.M., Bandyopadhyay S., McCaffrey A.P., Schmidt W.N. (2010) Biliverdin inhibits hepatitis C virus nonstructural 3/4A protease activity: Mechanism for the antiviral effects of heme oxygenase? Hepatology, 52, 1897-1905. CrossRef Scholar google search
Fillebeen C., Rivas-Estilla A.M., Bisaillon M., Ponka P., Muckenthaler M., Hentze M.W., Koromilas A.E., Pantopoulos K. (2005) Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus. J. Biol. Chem., 280, 9049-9057. CrossRef Scholar google search
Simmons C.P., Farrar J.J., Nguyen V.C., Wills B. (2012) Dengue. N. Engl. J. Med., 366, 1423-1432. CrossRef Scholar google search
Tseng C.-K., Lin C.-K., Wu Y.-H., Chen Y.-H., Chen W.-C., Young K.-C., Lee J.-C. (2016) Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci. Rep, 6, 32176. CrossRef Scholar google search
Huang H., Falgout B., Takeda K., Yamada K.M., Dhawan S. (2017) Nrf2-dependent induction of innate host defense via heme oxygenase-1 inhibits Zika virus replication. Virology, 503, 1-5. CrossRef Scholar google search
COVID-19 map — Johns Hopkins coronavirus resource center. Retrieved 24 June 2022 from https://coronavirus.jhu.edu/map.html. Scholar google search
Kim D.-H., Ahn H.-S., Go H.-J., Kim D.-Y., Kim J.-H., Lee J.-B., Park S.-Y., Song C.-S., Lee S.-W., Ha S.-D., Choi C., Choi I.-S. (2021) Hemin as a novel candidate for treating COVID-19 via heme oxygenase-1 induction. Sci. Rep., 11, 21462. CrossRef Scholar google search
Gharebaghi R., Heidary F., Moradi M., Parvizi M. (2020) Metronidazole: A potential novel addition to the COVID-19 treatment regimen. Arch. Acad. Emerg. Med., 8, 40. CrossRef Scholar google search
Hooper P.L. (2020) COVID-19 and heme oxygenase: Novel insight into the disease and potential therapies. Cell Stress Chaperones, 25, 707-710. CrossRef Scholar google search
Chen X., Wang Y., Xie X., Chen H., Zhu Q., Ge Z., Wei H., Deng J., Xia Z., Lian Q. (2018) Heme oxygenase-1 reduces sepsis-induced endoplasmic reticulum stress and acute lung injury. Mediators Inflammation, 2018, 9413876. CrossRef Scholar google search
Hsieh Y.H., Chen C.W., Schmitz S.F., King C.C., Chen W.J., Wu Y.C., Ho M.S. (2010) Candidate genes associated with susceptibility for SARS-coronavirus. Bull. Math. Biol., 72, 122-132. CrossRef Scholar google search
Maestro S., Córdoba K.M., Olague C., Argemi J., Ávila M.A., González-Aseguinolaza G., Smerdou C., Fontanellas A. (2021) Heme oxygenase-1 inducer hemin does not inhibit SARS-CoV-2 virus infection. Biomed. Pharmacother., 137, 111384. CrossRef Scholar google search
Melkova Z., Martasek P., Koziar Vasakova M., Hoznauerova L. (2022) Use of heme arginate for the manufacture of a medicament for the treatment of beta coronavirus infection. WO/2022/024058. Scholar google search
Lee W.C., Reniere M.L., Skaar E.P., Murphy M.E. (2008) Ruffling of metalloporphyrins bound to IsdG and IsdI, two heme-degrading enzymes in Staphylococcus aureus. J. Biol. Chem., 283, 30957-30963. CrossRef Scholar google search
Hijazi S., Visca P., Frangipani E. (2017) Galliumprotoporphyrin IX inhibits Pseudomonas aeruginosa growth by targeting cytochromes. Front. Cell. Infect. Microbiol., 7, 12. CrossRef Scholar google search
Zhao J., Liang D., Robinson E., Xue F. (2019) The effects of novel heme oxygenase inhibitors on the growth of Pseudomonas aeruginosa. Microb. Pathog., 129, 64-67. CrossRef Scholar google search
Conger M.A., Pokhrel D., Liptak M.D. (2017) Tight binding of heme to Staphylococcus aureus IsdG and IsdI precludes design of a competitive inhibitor. Metallomics, 9, 556-563. CrossRef Scholar google search
Li M., Wilkins M.R. (2020) Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Int. J. Biol. Macromol., 156, 691-703. CrossRef Scholar google search
Tyubaeva P.M., Varyan I.A., Nikolskaya E.D., Mollaeva M.R., Yabbarov N.G., Sokol M.B., Chirkina M.V., Popov A.A. (2023) Biocompatibility and antimicrobial activity of electrospun fibrous materials based on PHB and modified with hemin. Nanomaterials, 13, 236. CrossRef Scholar google search