The flavonoids fisetin, apigenin, kaempferol, naringenin, naringin regulate respiratory activity and membrane potential of rat liver mitochondria and inhibit oxidative processes in erythrocytes
Flavonoids, secondary plant metabolites, represent the most abundant heterogeneous group of phytochemicals. The aim of this study to compare antioxidant activity and regulatory properties of several representatives of different classes of flavonoids, fisetin, apigenin, kaempferol, naringenin, naringin, using liver mitochondria and erythrocytes as research objects. In the concentration range of 2.5–25 μM fisetin, apigenin, kaempferol, naringenin, and naringin dose-dependently prevented oxidative damage of erythrocytes induced by 700 μM tert-butyl hydroperoxide: accumulation of lipid peroxidation (LPO) products and oxidation of glutathione GSH. The IC50 values corresponding to the flavonoid concentration inhibiting the LPO process in erythrocyte membranes by 50%, were 3.9±0.8 μM in the case of fisetin, 6.5±1.6 μM in the case of kaempferol, 8.1±2.1 μM in the case of apigenin, 37.8±4.4 μM in the case of naringenin, and 64.7±8.6 μM in the case of naringin. The antioxidant effect of flavonoids was significantly higher in the membrane structures compared to the cytoplasm of cells. All flavonoids studied (10–50 μM) effectively inhibited the respiratory activity of isolated rat liver mitochondria and, with the exception of kaempferol, stimulated Ca²⁺-induced dissipation of the mitochondrial membrane potential. Cyclosporine A and ruthenium red inhibited flavonoid-stimulated Ca²⁺-dependent membrane depolarization, thus indicating that the mitochondrial calcium uniporter and the mitochondrial permeability transition pore opening were involved in the flavonoid effects. Flavonoids, as the redox-active compounds with antioxidant properties, are able to regulate mitochondrial potential and respiratory activity, and prevent mitochondrial oxidative stress. They can be considered as effective pharmacological agents or nutraceuticals.
Savko A.I., Ilyich T.V., Veiko A.G., Kovalenia T.A., Lapshina E.A., Zavodnik I.B. (2023) The flavonoids fisetin, apigenin, kaempferol, naringenin, naringin regulate respiratory activity and membrane potential of rat liver mitochondria and inhibit oxidative processes in erythrocytes. Biomeditsinskaya Khimiya, 69(5), 281-289.
Savko A.I. et al. The flavonoids fisetin, apigenin, kaempferol, naringenin, naringin regulate respiratory activity and membrane potential of rat liver mitochondria and inhibit oxidative processes in erythrocytes // Biomeditsinskaya Khimiya. - 2023. - V. 69. -N 5. - P. 281-289.
Savko A.I. et al., "The flavonoids fisetin, apigenin, kaempferol, naringenin, naringin regulate respiratory activity and membrane potential of rat liver mitochondria and inhibit oxidative processes in erythrocytes." Biomeditsinskaya Khimiya 69.5 (2023): 281-289.
Savko, A. I., Ilyich, T. V., Veiko, A. G., Kovalenia, T. A., Lapshina, E. A., Zavodnik, I. B. (2023). The flavonoids fisetin, apigenin, kaempferol, naringenin, naringin regulate respiratory activity and membrane potential of rat liver mitochondria and inhibit oxidative processes in erythrocytes. Biomeditsinskaya Khimiya, 69(5), 281-289.
References
Tarakhovsky Y.S., Kim Y.A., Abdrasilov B.S., Muzafarov E.N. (2013) Flavonoids: Biochemistry, Biophysics, Medicine (Mayevsky E.I., ed.) Synchrobook, Pushchino, 310 p. Scholar google search
Chervyakovsky E.M., Kurchenko V.P., Kostyuk V.A. (2009) Physiological and therapeutic significance of oxidative processes occurring with the participation of flavonoids in plant and animal organisms. Trudy BGU. Physiological, Biochemical and Molecular Basis for the Functioning of Biosystems, 4(1), 9-26. Scholar google search
Sinha D. (2019) Pharmacological importance of polyphenols: A review. Int. Res. J. Pharm., 10(9), 13-23. CrossRef Scholar google search
Agati G., Azzarello E., Pollastri S., Tattini M. (2012) Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, 196, 67-76. CrossRef Scholar google search
Leopoldini M., Russo N., Toscano M. (2011) The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem., 125(2), 288-306. CrossRef Scholar google search
Nijveldt R.J., van Nood E., van Hoorn D.E., Boelens P.G., van Norren K., van Leeuwen P.A. (2001) Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 74(4), 418-425. CrossRef Scholar google search
Xu D., Hu M.-J., Wang Y.-Q., Cui Y.-L. (2019) Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 24(6), 1123. CrossRef Scholar google search
Safe S., Jayaraman A., Chapkin R.S., Howard M., Mohankumar K., Shrestha R. (2021) Flavonoids: Structure-function and mechanisms of action and opportunities for drug development. Toxicol. Res., 37, 147-162. CrossRef Scholar google search
Mennen L.I., Walker R., Bennetau-Pelissero C., Scalbert A. (2005) Risks and safety of polyphenol consumption. Am. J. Clin. Nutr., 81(suppl), 326S-329S. CrossRef Scholar google search
Kumar S., Pandey A.K. (2013) Chemistry and biological activities of flavonoids: An overview. Sci. World J., 2013, 162750. CrossRef Scholar google search
Leri M., Scuto M., Ontario M.L., Calabrese V., Calabrese E.J., Bucciantini M., Stefani M. (2020) Healthy effects of plant polyphenols: Molecular mechanisms. Int. J. Mol. Sci., 21, 1250. CrossRef Scholar google search
Johnson D., Lardy H.A. (1967) Isolation of liver and kidney mitochondria. Meth. Enzymol., 10, 94-101. CrossRef Scholar google search
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem., 193, 265-275. CrossRef Scholar google search
Stocks J., Dormandy T.L. (1971) The autoxidation of human red cell lipids induced by hydrogen peroxide. Br. J. Haematol., 20(1), 95-111. CrossRef Scholar google search
Akerman K.E.O., Wikström M.K.F. (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett., 6(2), 191-197. CrossRef Scholar google search
Dremza I.K., Lapshina E.A., Kujawa J., Zavodnik I.B. (2006) Oxygen-related processes in red blood cells exposed to tert-butyl hydroperoxide. Redox Report, 11(4), 185-192. CrossRef Scholar google search
Zhu L., Chen J., Tan J., Liu X., Wang B. (2017) Flavonoids from Agrimonia pilosa Ledeb: Free radical scavenging and DNA oxidative damage protection activities and analysis of bioactivity-structure relationship based on molecular and electronic structures. Molecules, 22, 195. CrossRef Scholar google search
Veiko A.G., Lapshina E.A., Zavodnik I.B. (2021) Comparative analysis of molecular properties and reactions with oxidants for quercetin, catechin, and naringenin. Mol. Cell. Biochem., 476(12), 4287-4299. CrossRef Scholar google search
Chen Z.Y., Chan P.T., Ho K.Y., Fung K.P., Wang J. (1996) Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chemistry Physics Lipids, 79(2), 157-163. CrossRef Scholar google search
Heijnen C.G.M., Haenen G.R., van Acker F.A., van der Vijgh W.J., Bast A. (2001) Flavonoids as peroxynitrite scavengers: The role of the hydroxyl groups. Toxicol. In Vitro, 15, 3-6. CrossRef Scholar google search
Veiko A.G., Ilyich T.V., Lapshina E.A., Buko V.U., Zavodnik I.B. (2018) Quantum-chemical modeling of the electronic structure of quercetin and inhibition by quercetin and the quercetin-hydroxypropyl-β-complex cyclodextrin lipid peroxidation in rat mitochondria and erythrocytes. Proceedings of the National Academy of Sciences of Belarus, Biological Series, 63(4), 499-511. CrossRef Scholar google search
Montero M., Lobaton C.D., Hernandez-Sanmiguel E., Santodomingo J., Vay L., Moreno A., Alvarez J. (2004) Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids. Biochemical J., 384, 19-24. CrossRef Scholar google search
Daussin F.N., Heyman E., Burelle Y. (2021) Effects of (-)-epicatechin on mitochondria. Nutr Rev., 79(1), 25-41. CrossRef Scholar google search
Kicinska A., Jarmuszkiewicz W. (2020) Flavonoids and mitochondria: Activation of cytoprotective pathways? Molecules, 25(13), 3060. CrossRef Scholar google search