1. Novosibirsk State Medical University, Novosibirsk, Russia; Research Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia 2. Research Institute of Molecular Biology and Biophysics, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia 3. Institute of Human Ecology of the Federal Research Center of Coal and Coal Chemistry SB RAS, Kemerovo, Russia 4. M.S. Rappoport Kuzbass Clinical Oncologic Dispensary, Kemerovo, Russia
Breast tumor diseases include a wide range of pathologies that require different approaches to their treatment. MicroRNA (miR) levels, reflecting regulation of the gene expression involved in tumorigenesis, can be diagnostic and prognostic markers of breast diseases. The levels of circulating miR-181a and miR-25 were measured in patients with benign breast diseases (BBD), patients with invasive carcinoma of a nonspecific type (ICNT) and also in conditionally healthy women. Expression of both miRs was higher in patients of both groups as compared to controls; at the same time, the content of serum miR-181a and miR-25 was higher in BBD patients than in ICNT patients. The detected changes may be of interest in the context of precancerous changes in BBD. It seems possible to use them in the future as markers of the pathological process as a part of a large diagnostic panel.
Download PDF:
Keywords: miR-181a, miR-25, breast cancer, benign breast diseases
Citation:
Perepechaeva M.L., Studenikina A.A., Grishanova A.Yu., Glushkov A.N., Polenok E.G., Bajramov P.V., Autenshlyus A.I. (2023) Serum miR-181a and miR-25 in patients with malignant and benign breast diseases. Biomeditsinskaya Khimiya, 69(5), 307-314.
Perepechaeva M.L. et al. Serum miR-181a and miR-25 in patients with malignant and benign breast diseases // Biomeditsinskaya Khimiya. - 2023. - V. 69. -N 5. - P. 307-314.
Perepechaeva M.L. et al., "Serum miR-181a and miR-25 in patients with malignant and benign breast diseases." Biomeditsinskaya Khimiya 69.5 (2023): 307-314.
Perepechaeva, M. L., Studenikina, A. A., Grishanova, A. Yu., Glushkov, A. N., Polenok, E. G., Bajramov, P. V., Autenshlyus, A. I. (2023). Serum miR-181a and miR-25 in patients with malignant and benign breast diseases. Biomeditsinskaya Khimiya, 69(5), 307-314.
References
Łukasiewicz S., Czeczelewski M., Forma A., Baj J., Sitarz R., Stanisіawek A. (2021) Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies – an updated review. Cancers, 13(17), 4287. CrossRef Scholar google search
Breast Tumours (2019) International agency for besearch on cancer: Lyon, 298 p. Scholar google search
Zhai Z., Mu T., Zhao L., Li Y., Zhu D., Pan Y. (2022) miR-181a-5p facilitates proliferation, invasion, and glycolysis of breast cancer through NDRG2-mediated activation of PTEN/AKT pathway. Bioengineered, 13(1), 83-95. CrossRef Scholar google search
Yang C., Tabatabaei S.N., Ruan X., Hardy P. (2017) The dual regulatory role of mir-181a in breast cancer. Cell. Physiol. Biochem., 44(3), 843-856. CrossRef Scholar google search
Mahmoudian M., Razmara E., Mahmud Hussen B., Simiyari M., Lotfizadeh N., Motaghed H., Khazraei Monfared A., Montazeri M., Babashah S. (2021) Identification of a six-microRNA signature as a potential diagnostic biomarker in breast cancer tissues. J. Clin. Lab. Anal., 35(11), e24010. CrossRef Scholar google search
Huang X., Yuan T., Tschannen M., Sun Z., Jacob H., Du M., Liang M., Dittmar R.L., Liu Y., Liang M., Kohli M., Thibodeau S.N., Boardman L., Wang L. (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics, 14, 319. CrossRef Scholar google search
Ling H., Fabbri M., Calin G.A. (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov., 12(11), 847-865. CrossRef Scholar google search
Li Y., Kuscu C., Banach A., Zhang Q., Pulkoski-Gross A., Kim D., Liu J., Roth E., Li E., Shroyer K.R., Denoya P.I., Zhu X., Chen L., Cao J. (2015) miR-181a-5p inhibits cancer cell migration and angiogenesis via downregulation of matrix metalloproteinase-14. Cancer Res., 75(13), 2674-2685. CrossRef Scholar google search
El Majzoub R., Fayyad-Kazan M., Nasr El Dine A., Makki R., Hamade E., Grée R., Hachem A., Talhouk R., Fayyad-Kazan H., Badran B. (2019) A thiosemicarbazone derivative induces triple negative breast cancer cell apoptosis: Possible role of miRNA-125a-5p and miRNA-181a-5p. Genes Genomics, 41(12), 1431-1443. CrossRef Scholar google search
Park J.W., Kim Y., Lee S.B., Oh C.W., Lee E.J., Ko J.Y., Park J.H. (2022) Autophagy inhibits cancer stemness in triple-negative breast cancer via miR-181a-mediated regulation of ATG5 and/or ATG2B. Mol. Oncol., 16(9), 1857-1875. CrossRef Scholar google search
Ferracin M., Lupini L., Salamon I., Saccenti E., Zanzi M.V., Rocchi A., da Ros L., Zagatti B., Musa G., Bassi C., Mangolini A., Cavallesco G., Frassoldati A., Volpato S., Carcoforo P., Hollingsworth A.B., Negrini M. (2015) Absolute quantification of cell-free microRNAs in cancer patients. Oncotarget, 6(16), 14545-14555. CrossRef Scholar google search
Godfrey A.C., Xu Z., Weinberg C.R., Getts R.C., Wade P.A., de Roo L.A., Sandler D.P., Taylor J.A. (2013) Serum microRNA expression as an early marker for breast cancer risk in prospectively collected samples from the Sister Study cohort. Breast Cancer Research: BCR, 15(3), R42. CrossRef Scholar google search
Sárközy M., Kahán Z., Csont T. (2018) A myriad of roles of miR-25 in health and disease. Oncotarget, 9(30), 21580-21612. CrossRef Scholar google search
Chen H., Pan H., Qian Y., Zhou W., Liu X. (2018) miR-25-3p promotes the proliferation of triple negative breast cancer by targeting BTG2. Molecular Cancer, 17(1), 4. CrossRef Scholar google search
Wang Z., Wang N., Liu P., Chen Q., Situ H., Xie T., Zhang J., Peng C., Lin Y., Chen J. (2014) MicroRNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget, 5(16), 7013-7026. CrossRef Scholar google search
Wang L.J., Chiou J.T., Lee Y.C., Chang L.S. (2022) Docetaxel-triggered SIDT2/NOX4/JNK/HuR signaling axis is associated with TNF-α-mediated apoptosis of cancer cells. Biochem. Pharmacol., 195, 114865. CrossRef Scholar google search
Chang J.T., Wang F., Chapin W., Huang R.S. (2016) Identification of microRNAs as breast cancer prognosis markers through the cancer genome atlas. PloS One, 11(12), e0168284. CrossRef Scholar google search
Yao J., Li G., Liu M., Yang S., Su H., Ye C. (2022) lnc-MICAL2-1 sponges miR-25 to regulate DKK3 expression and inhibits activation of the Wnt/в-catenin signaling pathway in breast cancer. Int. J. Mol. Med., 49(2), 23. CrossRef Scholar google search
Stachs A., Stubert J., Reimer T., Hartmann S. (2019) Benign breast disease in women. Deutsches Arzteblatt International, 116(33-34), 565-574. CrossRef Scholar google search
Román M., Louro J., Posso M., Alcántara R., Peñalva L., Sala M., del Riego J., Prieto M., Vidal C., Sánchez M., Bargalló X., Tusquets I., Castells X. (2021) Breast density, benign breast disease, and risk of breast cancer over time. European Radiology, 31(7), 4839-4847. CrossRef Scholar google search
Mehta N., Rousslang L., Shokouh-Amiri M., Wiley E.L., Green L. (2020) Complex solid and cystic breast cancer: A series of six case reports. J. Radiology Case Reports, 14(2), 21-44. CrossRef Scholar google search
Nagai M.A. (2016) Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and cancer. Biomed. Rep., 4(3), 275-281. CrossRef Scholar google search
Guo L.J., Zhang Q.Y. (2012) Decreased serum miR-181a is a potential new tool for breast cancer screening. Int. J. Mol. Med., 30(3), 680-686. CrossRef Scholar google search
Liu B., Li X., Li C., Xu R., Sun X. (2019) miR-25 mediates metastasis and epithelial-mesenchymal-transition in human esophageal squamous cell carcinoma via regulation of E-cadherin signaling. Bioengineered, 10(1), 679-688. CrossRef Scholar google search
Song J., Li Y. (2017) miR-25-3p reverses epithelialmesenchymal transition via targeting Sema4C in cisplatin-resistance cervical cancer cells. Cancer Science, 108(1), 23-31. CrossRef Scholar google search
Tanic M., Yanowski K., Gómez-López G., Rodriguez-Pinilla M.S., Marquez-Rodas I., Osorio A., Pisano D.G., Martinez-Delgado B., Benítez J. (2015) MicroRNA expression signatures for the prediction of BRCA1/2 mutation-associated hereditary breast cancer in paraffin-embedded formalin-fixed breast tumors. Int. J. Cancer, 136(3), 593-602. CrossRef Scholar google search
Sadeghi H., Kamal A., Ahmadi M., Najafi H., Sharifi Zarchi A., Haddad P., Shayestehpour B., Kamkar L., Salamati M., Geranpayeh L., Lashkari M., Totonchi M. (2021) A novel panel of blood-based microRNAs capable of discrimination between benign breast disease and breast cancer at early stages. RNA biology, 18(sup2), 747-756. CrossRef Scholar google search