Contribution of the gasotransmitter nitric oxide to the structural and functional organization of erythrocytes under conditions of hypoxia/reoxygenation
Akulich N.V.1 , Zinchuk V.V.2
1. National Anti-Doping Laboratory, Lyasny, Minsk Region, Belarus 2. Grodno State Medical University, Grodno, Belarus
Hypoxia is accompanied by changes in metabolism and cell functioning. Erythrocyte hemoglobin can be involved in adaptation to hypoxia by acting as an oxygen sensor, providing a link between oxygen content and blood circulation. The mechanisms providing this function have not been completely established. The purpose of this study was to evaluate the effect of the gasotransmitter nitric oxide on the structural and functional organization of erythrocytes under conditions of hypoxia/reoxygenation. NO participated in adaptive reactions under hypoxia/reoxygenation conditions by changing hemoglobin conformation, followed by changes in hemoprotein spectral characteristics and hemoglobin affinity to oxygen together with increasing anisocytosis, volume and cell surface. The increase in intracellular NO concentrations under hypoxic conditions was provided by extracellular fluid nitrites. Molsidomine (a NO donor) induced a higher NO increase without involvement of the nitrite reductase mechanism, it caused an increase in the average erythrocyte volume, anisocytosis, and an increase in the cell surface.
Akulich N.V., Zinchuk V.V. (2023) Contribution of the gasotransmitter nitric oxide to the structural and functional organization of erythrocytes under conditions of hypoxia/reoxygenation. Biomeditsinskaya Khimiya, 69(5), 315-321.
Akulich N.V. et al. Contribution of the gasotransmitter nitric oxide to the structural and functional organization of erythrocytes under conditions of hypoxia/reoxygenation // Biomeditsinskaya Khimiya. - 2023. - V. 69. -N 5. - P. 315-321.
Akulich N.V. et al., "Contribution of the gasotransmitter nitric oxide to the structural and functional organization of erythrocytes under conditions of hypoxia/reoxygenation." Biomeditsinskaya Khimiya 69.5 (2023): 315-321.
Akulich, N. V., Zinchuk, V. V. (2023). Contribution of the gasotransmitter nitric oxide to the structural and functional organization of erythrocytes under conditions of hypoxia/reoxygenation. Biomeditsinskaya Khimiya, 69(5), 315-321.
References
Shephard R.J. (1973) Physical activity and metabolism. The role of exercise biochemistry in sports medicine. J. Sports Medicine Physical Fitness, 13(1), 45-53. Scholar google search
Allen B.W., Stamler J.S., Piantadosi C.A. (2009) Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol. Med., 15(10), 452-460. CrossRef Scholar google search
Zhao Y., Wang X., Noviana M., Hou M. (2018) Nitric oxide in red blood cell adaptation to hypoxia. Acta Biochim. Biophys. Sin. (Shanghai), 50(7), 621-634. CrossRef Scholar google search
Stamler J.S., Jia L., Eu J.P., McMahon T.J., Demchenko I.T., Bonaventura J., Gernert K., Piantadosi C.A. (1997) Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science, 276(5321), 2034-2037. CrossRef Scholar google search
Tune J.D., Gorman M.W., Feigl E.O. (2004) Matching coronary blood flow to myocardial oxygen consumption. J. Appl. Physiol., 97(1), 404-415. CrossRef Scholar google search
Tsai A.G., Johnson P.C., Intaglietta M. (2003) Oxygen gradients in the microcirculation. Physiol. Rev., 83(3), 933-963. CrossRef Scholar google search
González-Alonso J., Olsen D.B., Saltin B. (2002) Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: Role of circulating ATP. Circulation Res., 91(11), 1046-1055. CrossRef Scholar google search
Huang Z. (2005) Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J. Clin. Investig., 115(8), 2099-2107. CrossRef Scholar google search
Gladwin M.T., Crawford J.H., Patel R.P. (2004) The biochemistry of nitric oxide, nitrite, and hemoglobin: Role in blood flow regulation. Free Rad. Biol. Med., 36(6), 707-717. CrossRef Scholar google search
Darius H., Ahland B., Rücker W., Klaus W., Peskar B.A., Schrör K. (1984) The effects of molsidomine and its metabolite SIN-1 on coronary vessel tone, platelet aggregation, and eicosanoid formation in vitro – inhibition of 12-HPETE biosynthesis. J. Cardiovasc. Pharmacol., 6(1), 115-121. CrossRef Scholar google search
Starodubtseva M.N., Tattersall A.L., Kuznetsova T.G., Yegorenkov N.I., Ellory J.C. (2008) Structural and functional changes in the membrane and membrane skeleton of red blood cells induced by peroxynitrite. Bioelectrochemistry (Amsterdam), 73(2), 155-162. CrossRef Scholar google search
Kita Y., Hirasawa Y., Maeda K., Nishio M., Yoshida K. (1994) Spontaneous nitric oxide release accounts for the potent pharmacological actions of FK409. Eur. J. Pharmacol., 257(1-2), 123-130. CrossRef Scholar google search
Doyle M.P., Pickering R.A., deWeert T.M., Hoekstra J.W., Pater D. (1981) Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites. J. Biol. Chem., 256(23), 12393-12398. CrossRef Scholar google search
Akulich N.V., Zinchuk V.V. (2022) Role of the L-Arginine/NO system in red blood cells at different values of oxygen partial pressure. J. Evol. Biochem. Physiol., 58(2), 548-557. CrossRef Scholar google search
Ullrich T., Oberle S., Abate A., Schröder H. (1997) Photoactivation of the nitric oxide donor SIN-1. FEBS Lett., 406(1-2), 66-68. CrossRef Scholar google search
Liu X., Miller M.J., Joshi M.S., Sadowska-Krowicka H., Clark D.A., Lancaster J.R. (1998) Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem., 273(30), 18709-18713. CrossRef Scholar google search
Hanson E.K., Ballantyne J. (2010) A blue spectral shift of the hemoglobin soret band correlates with the age (time since deposition) of dried bloodstains. PLoS One, 5(9), e12830. CrossRef Scholar google search
Marković S., Ognjanović B., Štajn A., Žikić R., Saičić Z., Radojičić R., Spasić M.B. (2006) The effects of nitroglycerine on the redox status of rat erythrocytes and reticulocytes. Physiol. Res., 55(4), 389-396. CrossRef Scholar google search
d’Alessandro A., Xia Y. (2020) Erythrocyte adaptive metabolic reprogramming under physiological and pathological hypoxia. Curr. Opin. Hematol., 27(3), 155-162. CrossRef Scholar google search
Rogers S.C., Said A., Corcuera D., McLaughlin D., Kell P., Doctor A. (2009) Hypoxia limits antioxidant capacity in red blood cells by altering glycolytic pathway dominance. FASEB J., 23(9), 3159-3170. CrossRef Scholar google search
Zhuge Z., Haworth S., Nihlén C., Carvalho L.R.R.A., Heuser S.K., Kleschyov A.L., Nasiell J., Cortese-Krott M.M., Weitzberg E., Lundberg J.O., Carlström M. (2023) Red blood cells from endothelial nitric oxide synthase-deficient mice induce vascular dysfunction involving oxidative stress and endothelial arginase I. Redox Biology, 60, 102612. CrossRef Scholar google search
Ellsworth M.L., Forrester T., Ellis C.G., Dietrich H.H. (1995) The erythrocyte as a regulator of vascular tone. Am. J. Physiol., 269(6 Pt 2), H2155-H2161. CrossRef Scholar google search
Han T.H., Qamirani E., Nelson A.G., Hyduke D.R., Chaudhuri G., Kuo L., Liao J.C. (2003) Regulation of nitric oxide consumption by hypoxic red blood cells. Proc. Nat. Acad. Sci. USA, 100(21), 12504-12509. CrossRef Scholar google search