Plasma membrane proteins with extracellular-exposed domains are responsible for transduction of extracellular signals into intracellular responses, and their accessibility to therapeutic molecules makes them attractive targets for drug development. In this work, using omics technologies and immunochemical methods, we have studied changes in the content of markers of clusters of differentiation (CD markers) of neutrophils (CD33, CD97, CD54, CD38, CD18, CD11b, CD44, and CD71) at the level of transcripts and proteins in NB4, HL-60 and K562 cell lines, induced by the treatment with all-trans-retinoic acid (ATRA). Transcriptomic analysis revealed the induction of CD38, CD54, CD11b, and CD18 markers as early as 3 h after the addition of the inducer in the ATRA-responsive cell lines HL-60 and NB4. After 24 h, a line-specific expression pattern of CD markers could be observed in all cell lines. Studies of changes in the content of CD antigens by means of flow cytometry and targeted mass spectrometry (MS) gave similar results. The proteomic profile of the surface markers (CD38, CD54, CD11b, and CD18), characteristic of the NB4 and HL-60 lines, reflects different molecular pathways for the implementation of ATRA-induced differentiation of leukemic cells into mature neutrophils.
Novikova S.E., Tolstova T.V., Soloveva N.A., Farafonova T.E., Tikhonova O.V., Kurbatov L.K., Rusanov A.L., Zgoda V.G. (2023) System analysis of surface CD markers during the process of granulocytic differentiation. Biomeditsinskaya Khimiya, 69(6), 383-393.
Novikova S.E. et al. System analysis of surface CD markers during the process of granulocytic differentiation // Biomeditsinskaya Khimiya. - 2023. - V. 69. -N 6. - P. 383-393.
Novikova S.E. et al., "System analysis of surface CD markers during the process of granulocytic differentiation." Biomeditsinskaya Khimiya 69.6 (2023): 383-393.
Novikova, S. E., Tolstova, T. V., Soloveva, N. A., Farafonova, T. E., Tikhonova, O. V., Kurbatov, L. K., Rusanov, A. L., Zgoda, V. G. (2023). System analysis of surface CD markers during the process of granulocytic differentiation. Biomeditsinskaya Khimiya, 69(6), 383-393.
References
Ray S., Kassan A., Busija A.R., Rangamani P., Patel H.H. (2016) The plasma membrane as a capacitor for energy and metabolism. Am. J. Physiol. Cell Physiol., 310(3), C181-C192. CrossRef Scholar google search
Leth-Larsen R., Lund R.R., Ditzel H.J. (2010) Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol. Cell. Proteomics, 9(7), 1369-1382. CrossRef Scholar google search
Kroeze W.K., Sheffler D.J., Roth B.L. (2003) G-protein-coupled receptors at a glance. J. Cell Sci., 116(24), 4867-4869. CrossRef Scholar google search
Heldin C.-H., Lu B., Evans R., Gutkind J.S. (2016) Signals and receptors. Cold Spring Harb. Perspect. Biol., 8(4), a005900. CrossRef Scholar google search
Le T.T., Blackwood N.O., Taroni J.N., Fu W., Breitenstein M.K. (2018) Integrated machine learning pipeline for aberrant biomarker enrichment (i-mAB): Characterizing clusters of differentiation within a compendium of systemic lupus erythematosus patients. AMIA Annu. Symp. Proc., 2018, 1358-1367. CrossRef Scholar google search
Dempsey M.E., Woodford-Berry O., Darling E.M. (2021) Quantification of antibody persistence for cell surface protein labeling. Cell. Mol. Bioeng., 14(3), 267-277. CrossRef Scholar google search
Chames P., van Regenmortel M., Weiss E., Baty D. (2009) Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharmacol., 157(2), 220-233. CrossRef Scholar google search
Kopylov A.T., Ponomarenko E.A., Ilgisonis E.V., Pyatnitskiy M.A., Lisitsa A.V., Poverennaya E.V., Kiseleva O.I., Farafonova T.E., Tikhonova O.V., Zavialova M.G., Novikova S.E., Moshkovskii S.A., Radko S.P., Morukov B.V., Grigoriev A.I., Paik Y.-K., Salekdeh G.H., Urbani A., Zgoda V.G., Archakov A.I. (2019) 200+ protein concentrations in healthy human blood plasma: Targeted quantitative SRM SIS screening of chromosomes 18, 13, Y, and the mitochondrial chromosome encoded proteome. J. Proteome Res., 18(1), 120-129. CrossRef Scholar google search
Birnie G.D. (1988) The HL60 cell line: A model system for studying human myeloid cell differentiation. Br. J. Cancer, 58(SUPPL. 9), 41-45. Scholar google search
Novikova S.E., Vakhrushev I.V., Tsvetkova A.V., Shushkova N.A., Farafonova T.E., Yarygin K.N., Zgoda V.G. (2019) Proteomics of transcription factors: Identification of pool of HL-60 cell line-specific regulatory proteins. Biomeditsinskaya Khimiya, 65(4), 294-305. CrossRef Scholar google search
Walter R.B., Appelbaum F.R., Estey E.H., Bernstein I.D. (2012) Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood, 119(26), 6198-6208. CrossRef Scholar google search
Martin G.H., Roy N., Chakraborty S., Desrichard A., Chung S.S., Woolthuis C.M., Hu W., Berezniuk I., Garrett-Bakelman F.E., Hamann J., Devlin S.M., Chan T.A., Park C.Y. (2019) CD97 is a critical regulator of acute myeloid leukemia stem cell function. J. Exp. Med., 216(10), 2362-2377. CrossRef Scholar google search
Sanchez P.V., Glantz S.T., Scotland S., Kasner M.T., Carroll M. (2014) Induced differentiation of acute myeloid leukemia cells by activation of retinoid X and liver X receptors. Leukemia, 28(4), 749-760. CrossRef Scholar google search
Rosmarin A.G., Weil S.C., Rosner G.L., Griffin J.D., Arnaout M.A., Tenen D.G. (1989) Differential expression of CDllb/CD18 (Mol) and myeloperoxidase genes during myeloid differentiation. Blood, 73(1), 131-136. CrossRef Scholar google search
Gutjahr J.C., Bayer E., Yu X., Laufer J.M., Höpner J.P., Tesanovic S., Härzschel A., Auer G., Rieß T., Salmhofer A., Szenes E., Haslauer T., Durand-Onayli V., Ramspacher A., Pennisi S.P., Artinger M., Zaborsky N., Chigaev A., Aberger F., Neureiter D., Pleyer L., Legler D.F., Orian-Rousseau V., Greil R., Hartmann T.N. (2021) CD44 engagement enhances acute myeloid leukemia cell adhesion to the bone marrow microenvironment by increasing VLA-4 avidity. Haematologica, 106(8), 2102-2113. CrossRef Scholar google search
Wu B., Shi N., Sun L., Liu L. (2016) Clinical value of high expression level of CD71 in acute myeloid leukemia. Neoplasma, 63(5), 809-815. CrossRef Scholar google search
Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. (2009) Universal sample preparation method for proteome analysis. Nat. Methods, 6(5), 359-362. CrossRef Scholar google search
Kalina T., Fišer K., Pérez-Andrés M., Kužílková D., Cuenca M., Bartol S.J.W., Blanco E., Engel P., van Zelm M.C. (2019) CD maps — dynamic profiling of CD1-CD100 surface expression on human leukocyte and lymphocyte subsets. Front. Immunol., 10, 2434. CrossRef Scholar google search
Edfors F., Danielsson F., Hallström B.M., Käll L., Lundberg E., Pontén F., Försstrom B., Uhlén M. (2016) Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol. Syst. Biol., 12(10), 883. CrossRef Scholar google search
Pérez-Mojica J.E., Enders L., Walsh J., Lau K.H., Lempradl A. (2023) Continuous transcriptome analysis reveals novel patterns of early gene expression in Drosophila embryos. Cell Genomics, 3(3), 100265. CrossRef Scholar google search
Szlasa W., Czarny J., Sauer N., Rakoczy K., Szymańska N., Stecko J., Kołodziej M., Kaźmierczak M., Barg E. (2022) Targeting CD38 in neoplasms and non-cancer diseases. Cancers (Basel), 14(17), 4169. CrossRef Scholar google search
Dürig J., Naschar M., Schmücker U., Renzing-Köhler K., Hölter T., Hüttmann A., Dührsen U. (2002) CD38 expression is an important prognostic marker in chronic lymphocytic leukaemia. Leukemia, 16(1), 30-35. CrossRef Scholar google search
Benedicto A., Marquez J., Herrero A., Olaso E., Kolaczkowska E., Arteta B. (2017) Decreased expression of the β2 integrin on tumor cells is associated with a reduction in liver metastasis of colorectal cancer in mice. BMC Cancer, 17(1), 1-17. CrossRef Scholar google search
Zhang Q.Q., Hu X.W., Liu Y.L., Ye Z.J., Gui Y.H., Zhou D.L., Qi C.L., He X.D., Wang H., Wang L.J. (2015) CD11b deficiency suppresses intestinal tumor growth by reducing myeloid cell recruitment. Sci. Rep., 5, 1-12. CrossRef Scholar google search
Hsu Y.L., Yen M.C., Chang W.A., Tsai P.H., Pan Y.C., Liao S.H., Kuo P.L. (2019) CXCL17-derived CD11b+Gr-1 +myeloid-derived suppressor cells contribute to lung metastasis of breast cancer through platelet-derived growth factor-BB. Breast Cancer Res., 21(1), 1-13. CrossRef Scholar google search
Chen T., Yang K., Yu J., Meng W., Yuan D., Bi F., Liu F., Liu J., Dai B., Chen X., Wang F., Zeng F., Xu H., Hu J., Mo X. (2012) Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res., 22(1), 248-258. CrossRef Scholar google search
Barber N., Belov L., Christopherson R.I. (2008) All-trans retinoic acid induces different immunophenotypic changes on human HL60 and NB4 myeloid leukaemias. Leuk. Res., 32(2), 315-322. CrossRef Scholar google search
Ludwig C., Gillet L., Rosenberger G., Amon S., Collins B.C., Aebersold R. (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Mol. Syst. Biol., 14(8), e8126. CrossRef Scholar google search
Engel P., Boumsell L., Balderas R., Bensussan A., Gattei V., Horejsi V., Jin B.-Q., Malavasi F., Mortari F., Schwartz-Albiez R., Stockinger H., van Zelm M., Zola H., Clark G. (2015) CD Nomenclature 2015: Human leukocyte differentiation antigen workshops as a driving force in immunology. J. Immunol., 195, 4555-4563. CrossRef Scholar google search