The effect of hyperglycemia on the activation of peritoneal macrophages of albino rats
Golyako I.A.1, Kuzmin V.S.2, Gorbacheva L.R.3
1. Moscow State University, Moscow, Russia 2. Academician E.I. Chazov National Medical Research Center for Cardiology, Moscow, Russia 3. Moscow State University, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
Hyperglycemia is one of the main damaging factors of diabetes mellitus (DM). The severity of this disease is most clearly manifested under conditions of the inflammatory process. In this work, we have studied the activation features of rat peritoneal macrophages (MPs) under conditions of high glucose concentration in vitro. Comparison of the independent and combined effects of streptozotocin-induced DM and hyperglycemia on proliferation and accumulation of nitrites in the MPs culture medium revealed similarity of their effects. Elevated glucose levels and, to a lesser extent, DM decreased basal proliferation and NO production by MPs in vitro. The use of the protein kinase C (PKC) activator, phorbol ester (PMA), abolished the proinflammatory effect of thrombin on PMs. This suggests the involvement of PKC in the effects of the protease. At the same time, the effect of thrombin on the level of nitrites in the culture medium demonstrates a pronounced dose-dependence, which was not recognized during evaluation of proliferation. Proinflammatory activation of MPs is potentiated by hyperglycemia, one of the main pathological factors of diabetes. Despite the fact that high concentrations of glucose have a significant effect on proliferation and NO production, no statistically significant differences were found between the responses of MPs obtained from healthy animals and from animals with streptozotocin-induced DM. This ratio was observed for all parameters studied in the work, during analysis of cell proliferation and measurement of nitrites in the culture medium. Thus, the results obtained indicate the leading role of elevated glucose levels in the regulation of MPs activation, which is comparable to the effect of DM and even “masks” it.
Golyako I.A., Kuzmin V.S., Gorbacheva L.R. (2023) The effect of hyperglycemia on the activation of peritoneal macrophages of albino rats. Biomeditsinskaya Khimiya, 69(6), 394-402.
Golyako I.A. et al. The effect of hyperglycemia on the activation of peritoneal macrophages of albino rats // Biomeditsinskaya Khimiya. - 2023. - V. 69. -N 6. - P. 394-402.
Golyako I.A. et al., "The effect of hyperglycemia on the activation of peritoneal macrophages of albino rats." Biomeditsinskaya Khimiya 69.6 (2023): 394-402.
Golyako, I. A., Kuzmin, V. S., Gorbacheva, L. R. (2023). The effect of hyperglycemia on the activation of peritoneal macrophages of albino rats. Biomeditsinskaya Khimiya, 69(6), 394-402.
References
Sheetz M.J., King G.L. (2002) Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. Diabetes, 288(20), 2579-2588. CrossRef Scholar google search
King G.L., Loeken M.R. (2004) Hyperglycemia-induced oxidative stress in diabetic complications. Histochem. Cell Biol., 122(4), 333-338. CrossRef Scholar google search
Qiu P., Liu Y., Zhang J. (2019) Review: The role and mechanisms of macrophage autophagy in sepsis. Inflammation, 42(1), 6-19. CrossRef Scholar google search
Oishi Y., Manabe I. (2018) Macrophages in inflammation, repair and regeneration. Int. Immunol., 30(11), 511-528. CrossRef Scholar google search
Lawrence T., Natoli G. (2011) Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nat. Rev. Immunol., 11(11), 750-761. CrossRef Scholar google search
Olefsky J.M., Glass C.K. (2010) Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol., 72(1), 219-246. CrossRef Scholar google search
Lee J. (2013) Adipose tissue macrophages in the development of obesity-induced inflammation, insulin resistance and type 2 diabetes. Arch. Pharm. Res., 36(2), 208-222. CrossRef Scholar google search
Crespo M.J., Zalacaín J., Dunbar D.C., Cruz N., Arocho L. (2008) Cardiac oxidative stress is elevated at the onset of dilated cardiomyopathy in streptozotocin-diabetic rats. J. Cardiovasc. Pharmacol. Ther., 13(1), 64-71. CrossRef Scholar google search
di Marco E., Gray S.P., Jandeleit-Dahm K. (2013) Diabetes alters activation and repression of pro- and anti-inflammatory signaling pathways in the vasculature. Front. Endocrinol. (Lausanne), 4, 68. CrossRef Scholar google search
Louiselle A.E., Niemiec S.M., Zgheib C., Liechty K.W. (2021) Macrophage polarization and diabetic wound healing. Transl. Res., 236, 109-116. CrossRef Scholar google search
Maassen S., Coenen B., Ioannidis M., Harber K., Grijpstra P., van den Bossche J., van den Bogaart G. (2023) Itaconate promotes a wound resolving phenotype in pro-inflammatory macrophages. Redox Biol., 59, 102591. CrossRef Scholar google search
Mirza R.E., Fang M.M., Weinheimer-Haus E.M., Ennis W.J., Koh T.J. (2014) Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes, 63(3), 1103-1114. CrossRef Scholar google search
Ahmed M., de Winther M.P.J., van den Bossche J. (2017) Epigenetic mechanisms of macrophage activation in type 2 diabetes. Immunobiology, 222(10), 937-943. CrossRef Scholar google search
Cunningham M.A., Rondeau E., Chen X., Coughlin S.R., Holdsworth S.R., Tippinget P.G. (2000) Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis. J. Exp. Med., 191(3), 455-462. CrossRef Scholar google search
Colognato R., Slupsky J.R., Jendrach M., Burysek L., Syrovets T., Simmet T. (2003) Differential expression and regulation of protease-activated receptors in human peripheral monocytes and monocyte-derived antigen-presenting cells. Blood, 102(7), 2645-2652. CrossRef Scholar google search
Ryu J., Pyo H., Jou I., Joeet E. (2000) Thrombin induces NO release from cultured rat microglia via protein kinase C, mitogen-activated protein kinase, and NF-kappa B. J. Biol. Chem., 275(39), 29955-29959. CrossRef Scholar google search
Joy S., Scates A.C., Bearelly S., Dar M., Taulien C.A., Goebel J.A., Cooney M.J. (2005) Ruboxistaurin, a protein kinase C β inhibitor, as an emerging treatment for diabetes microvascular complications. Ann. Pharmacother., 39(10), 1693-1699. CrossRef Scholar google search
Vardanyan G.S., Alaverdyan A.R. (2009) Protein kinase C: from its specific molecular structure to its role in diabetic neuropathy. Neurochemical Journal, 3(1), 14-22. CrossRef Scholar google search
Morgan D., Oliveira-Emilio H.R., Keane D., Hirata A.E., Santos da Rocha M., Bordin S., Curi R., Newsholme P., Carpinelliet A.R. (2007) Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia, 50(2), 359-369. CrossRef Scholar google search
Lenzen S. (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 51(2), 216-226. CrossRef Scholar google search
Furman B.L. (2015) Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol., 70(1), 5.47.1-5.47.20. CrossRef Scholar google search
Fiordaliso F., Li B., Latini R., Sonnenblick E.H., Anversa P., Leri A., Kajstura J. (2000) Myocyte death in streptozotocininduced diabetes in rats is angiotensin II-dependent. Lab. Invest., 80(4), 513-527. CrossRef Scholar google search
Zhang X., Goncalves R., Mosser D.M. (2008) The isolation and characterization of murine macrophages. Curr. Protoc. Immunol., 83(1), 14.1.1-14.1.14. CrossRef Scholar google search
Liu Y.J., Saini A., Cohen D.J., Ooi B.S. (1995) Modulation of macrophage proliferation by hyperglycemia. Mol. Cell. Endocrinol., 114(1-2), 187-192. CrossRef Scholar google search
Qiu L., Ding L., Huang J., Wang D., Zhang J., Guo B. (2009) Induction of copper/zinc-superoxide dismutase by CCL5/CCR5 activation causes tumour necrosis factor-α and reactive oxygen species production in macrophages. Immunology, 128(1pt2), e325-e334. CrossRef Scholar google search
Gerlach B.D., Ampomah P.B., Yurdagul A. Jr., Liu C., Lauring M.C., Wang X., Kasikara C., Kong N., Shi J., Tao W., Tabas I. (2021) Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metab., 33(12), 2445-2463. CrossRef Scholar google search
Vittal Rao H., Bihaqi S.W., Iannucci J., Sen A., Grammas P. (2021) Thrombin signaling contributes to high glucose-induced injury of human brain microvascular endothelial cells. J. Alzheimer’s Dis., 79(1), 211-224. CrossRef Scholar google search
Sudic D., Razmara M., Forslund M., Ji Q., Hjemdahl P., Li N. (2006) High glucose levels enhance platelet activation: involvement of multiple mechanisms. Br. J. Haematol., 133(3), 315-322. CrossRef Scholar google search
Wang Y., Luo W., Han J., Khan Z.A., Fang Q., Jin Y., Chen X., Zhang Y., Wang M., Qian J., Huang W., Lum H., Wu G., Liang G. (2020) MD2 activation by direct AGE interaction drives inflammatory diabetic cardiomyopathy. Nat. Commun., 11(1), 2148. CrossRef Scholar google search
Jin X., Yao T., Zhou Z., Zhu J., Zhang S., Hu W., Shen C. (2015) Advanced glycation end products enhance macrophages polarization into M1 phenotype through activating RAGE/NF-κB pathway. Biomed Res. Int., 2015, 732450. CrossRef Scholar google search
Noyman I., Marikovsky M., Sasson S., Stark A.H., Bernath K., Seger R., Madar Z. (2002) Hyperglycemia reduces nitric oxide synthase and glycogen synthase activity in endothelial cells. Nitric Oxide, 7(3), 187-193. CrossRef Scholar google search
de Souza L.F., Barreto F., da Silva E.G., Andrades M.E., Guimarães E.L., Behr G.A., Moreira J.C., Bernard E.A. (2007) Regulation of LPS stimulated ROS production in peritoneal macrophages from alloxan-induced diabetic rats: Involvement of high glucose and PPARγ. Life Sci., 81, 153-159. CrossRef Scholar google search
Severn A., Wakelam M.J.O., Liew F.Y. (1992) The role of protein kinase C in the induction of nitric oxide synthesis by murine macrophages. Biochem. Biophys. Res. Commun., 188(3), 997-1002. CrossRef Scholar google search
Gorbacheva L., Pinelis V., Ishiwata S., Strukova S., Reiser G. (2010) Activated protein C prevents glutamate- and thrombin-induced activation of nuclear factor-kappaB in cultured hippocampal neurons. Neuroscience, 165(4), 1138-1146. CrossRef Scholar google search