Various chemotherapeutic agents are used to treat breast cancer (BC); one of them is the anthracycline antibiotic doxorubicin (Dox), which, in addition to its cytostatic effect, has serious side effects. In order to reduce its negative impact on healthy organs and tissues and to increase its accumulation in tumors, Dox was incorporated into phospholipid nanoparticles. The additional use of vector molecules for targeted delivery to specific targets can increase the effectiveness of Dox due to higher accumulation of the active substance in the tumor tissue. The integrin αvβ3, which plays an important role in cancer angiogenesis, and the folic acid receptor, which is responsible for cell differentiation and proliferation, have been considered in this study as targets for such vector molecules. Thus, a phospholipid composition of Dox containing two vector ligands, cRGD peptide and folic acid (NPh-Dox-cRGD-Fol(3,4)), was prepared. Study of the physical properties of the developed composition NPh-Dox-cRGD-Fol(3,4) showed that the average particle size was 39.62±4.61 nm, the ζ-potential value was 4.17±0.83 mV. Almost all Dox molecules were incorporated into phospholipid nanoparticles (99.85±0.21%). The simultaneous use of two vectors in the composition led to an increase in the Dox accumulation in MDA-MB-231 BC cells by almost 20% as compared to compositions containing each vector separately (folic acid or the cRGD peptide). Moreover, the degree of Dox internalization was 22% and 24% higher than in the case of separate use of folic acid and cRGD peptide, respectively. The cytotoxic effect on MDA-MB-231 cells was higher during incubations with the compositions containing folic acid as a single vector (NPh-Dox-Fol(3,4)) and together with the RGD peptide (NPh-Dox-cRGD-Fol(3,4)). Experiments on the Wi-38 diploid fibroblast cell line have shown a significantly lower degree of cytotoxic effect of the phospholipid composition, regardless of the presence of the vector molecules in it, as compared to free Dox. The results obtained indicate the potential of using two vectors in one phospholipid composition for targeted delivery of Dox.
Tereshkina Yu.A., Bedretdinov F.N., Kostryukova L.V. (2023) A dual-vector phospholipid nanosystem of doxorubicin: accumulation and cytotoxic effect in breast cancer cells in vitro. Biomeditsinskaya Khimiya, 69(6), 409-419.
Tereshkina Yu.A. et al. A dual-vector phospholipid nanosystem of doxorubicin: accumulation and cytotoxic effect in breast cancer cells in vitro // Biomeditsinskaya Khimiya. - 2023. - V. 69. -N 6. - P. 409-419.
Tereshkina Yu.A. et al., "A dual-vector phospholipid nanosystem of doxorubicin: accumulation and cytotoxic effect in breast cancer cells in vitro." Biomeditsinskaya Khimiya 69.6 (2023): 409-419.
Tereshkina, Yu. A., Bedretdinov, F. N., Kostryukova, L. V. (2023). A dual-vector phospholipid nanosystem of doxorubicin: accumulation and cytotoxic effect in breast cancer cells in vitro. Biomeditsinskaya Khimiya, 69(6), 409-419.
References
Kaprin A.D., Starinsky V.V., Shakhzadova A.O. (2022) Malignant neoplasms in Russia in 2021 (morbidity and mortality). Moscow: P.A. Herzen Research Medical Institute — branch of the Federal State Budgetary Institution “Research Institute of Radiology” of the Ministry of Health of Russia, 252 p. Scholar google search
Perou C.M., Sørlie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Rees C.A., Botstein D. (2000) Molecular portraits of human breast tumours. Nature, 406(6797), 747-752. CrossRef Scholar google search
Sorolla A., Sorolla M.A., Wang E., Ceña V. (2020) Peptides, proteins and nanotechnology: Apromising synergy for breast cancer targeting and treatment. Expert Opin. Drug Deliv., 17(11), 1597-1613. CrossRef Scholar google search
Govender J., Loos B., Marais E., Engelbrech A.-M. (2014) Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: A review of the protective role of melatonin. J. Pineal Res., 57, 367-380. CrossRef Scholar google search
Minko T., Rodriguez-Rodriguez L., Pozharov V. (2013) Nanotechnology approaches for personalized treatment of multidrug resistant cancers. Adv. Drug Deliv. Rev., 65(13-14), 1880-1895. CrossRef Scholar google search
Sun T., Zhang Y.S., Pang B., Hyun D.C., Yang M., Xia Y. (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angewandte Chemie International Education England Novel, 53(46), 12320-12364. CrossRef Scholar google search
Aghebati-Maleki A., Dolati S., Ahmadi M., Baghbanzhadeh A., Asadi M., Fotouhi A., Yousefi M., Aghebati-Maleki L. (2020) Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J. Cell Physiol., 235(3), 1962-1972. CrossRef Scholar google search
Dadwal A., Baldi A., Kumar Narang R. (2018) Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol., 46(sup2), 295-305. CrossRef Scholar google search
Shafei A., El-Bakly W., Sobhy A., Wagdy O., Reda A., Aboelenin O., Marzouk A., El Habak K., Mostafa R., Ali M.A., Ellithy M. (2017) A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed. Pharmacother., 95, 1209-1218. CrossRef Scholar google search
Wang J., Gong J., Wei Z. (2021) Strategies for liposome drug delivery systems to improve tumor treatment efficacy. AAPS PharmSciTech, 23(1), 27. CrossRef Scholar google search
Zhang M., Lou C., Cao A. (2022) Progresses on active targeting liposome drug delivery systems for tumor therapy. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 39(3), 633-638. CrossRef Scholar google search
d'Avanzo N., Torrieri G., Figueiredo P., Celia C., Paolino D., Correia A., Moslova K., Teesalu T., Fresta M., Santos H.A. (2021) LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int. J. Pharm., 597, 120346. CrossRef Scholar google search
Ge L., You X., Huang K., Kang Y., Chen Y., Zhu Y., Ren Y., Zhang Y., Wu J., Qian H. (2017) Screening of novel RGD peptides to modify nanoparticles for targeted cancer therapy. Biomaterials Science, 6(1), 125-135. CrossRef Scholar google search
Sun Y., Kang C., Liu F., Zhou Y., Luo L., Qiao H. (2017) RGD peptide-based target drug delivery of doxorubicin nanomedicine. Drug Devel. Res., 78(6), 283-291. CrossRef Scholar google search
Wu B., Zhao N. (2016) A targeted nanoprobe based on carbon nanotubes – natural biopolymer chitosan composites. Nanomaterials, 6, 216. CrossRef Scholar google search
Fong Y.T., Chen C.H., Chen J.P. (2017) Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials (Basel), 7(11), 388. CrossRef Scholar google search
Cé R., Couto G.K., Pacheco B.Z., Dallemole D.R., Paschoal J.D., Pacheco B.S., Guterres S.S., Seixas F., Collares T., Pohlmann A.R. (2021) Folic acid-doxorubicin polymeric nanocapsules: A promising formulation for the treatment of triple-negative breast cancer. Eur. J. Pharm. Sci., 165, 105943. CrossRef Scholar google search
Kayani Z., Bordbar A.K., Firuzi O. (2018) Novel folic acid-conjugated doxorubicin loaded β-lactoglobulin nanoparticles induce apoptosis in breast cancer cells. Biomed. Pharmacother., 107, 945-956. CrossRef Scholar google search
Lale S.V., Kumar A., Prasad S., Bharti A.C., Koul V. (2015) Folic acid and trastuzumab functionalized redox responsive polymersomes for intracellular doxorubicin delivery in breast cancer. Biomacromolecules, 16(6), 1736-1752. CrossRef Scholar google search
Nemtsova E.R., Tikhonova E.G., Bezborodova O.A., Pankratov A.A., Venediktova J.B., Korotkevich E.I., Kostryukova L.V., Tereshkina J.A. (2020) Preclinical study of pharmacological properties of doxorubicin-NPh. Bulletin of Experimental Biology and Medicine, 169, 778-782. CrossRef Scholar google search
Medvedeva N.V., Torkhovskaya T.I., Kostryukova L.V., Zakharova T.S., Kudinov V.A., Kasatkina E.O., Prozorovskiy V.N., Ipatova O.M. (2017) Influence of doxorubicin inclusion into phospholipid nanoparticles on tumor accumulation and specific activity. Biomeditsinskaya Khimiya, 63(1), 56-61. CrossRef Scholar google search
Zykova M.G., Medvedeva N.V., Torkhovskava T.I., Tikhonova E.G., Prozorovskii V.N., Zakharova T.S., Ipatova O.M. (2012) Influence of doxorubicin inclusion into phospholipid nanoformulation on its antitumor activity in mice: Increased efficiency for resistant tumor model. Experimental Oncology, 34, 323-326. Scholar google search
Zykova M.G., Ipatova O.M., Prozorovskii V.N., Medvedeva N.V., Voskresenskaya A.A., Zakharova T.S., Torkhovskaya T.I. (2011) Changes in the distribution of doxorubicin in blood and plasma when it is included in the phospholipid nanocomposition. Biomeditsinskaya Khimiya, 57(2), 174-179. CrossRef Scholar google search
Song Z., Lin Y., Zhang X., Feng C., Lu Y., Gao Y., Dong C. (2017) Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. Int. J. Nanomed., 12, 1941-1958. CrossRef Scholar google search
Kostryukova L.V., Tereshkina Y.A., Korotkevich E.I., Prozorovsky V.N., Torkhovskaya T.I., Morozevich G.E., Toropygin I.Y., Konstantinov M.A., Tikhonova E.G. (2020) Targeted drug delivery system for doxorubicin based on a specific peptide and phospholipid nanoparticles. Biomeditsinskaya Khimiya, 66(6), 464-468. CrossRef Scholar google search
Tikhonova E.G., Sanzhakov M.A., Tereshkina Yu.A., Kostryukova L.V., Khudoklinova Yu.Yu., Orlova N.A., Bobrova D.V., Ipatova O.M. (2022) Drug transport system based on phospholipid nanoparticles: Production technology and characteristics, Pharmaceutics, 14(11), 2522. CrossRef Scholar google search
Sheldon K., Liu D., Ferguson J., Gariepy J. (1995) Loligomers: Design of de novo peptide-based intracellular vehicles. Proc. Natl. Acad. Sci. USA, 92(6), 2056-2060. CrossRef Scholar google search
Farran B., Montenegro R.C., Kasa P., Pavitra E., Huh Y.S., Han Y.K., Kamal M.A., Nagaraju G.P., Rama Raju G.S. (2020) Folate-conjugated nanovehicles: Strategies for cancer therapy. Mater. Sci. Eng. C, 107, 110341. CrossRef Scholar google search
Cheng T.M., Chang W.J., Chu H.Y., de Luca R., Pedersen J.Z., Incerpi S., Li Z.L., Shih Y.J., Lin H.Y., Wang K., Whang-Peng J. (2021) Nano-strategies targeting the integrin αvβ3 network for cancer therapy. Cells, 10(7), 1684. CrossRef Scholar google search
Li R., Peng Y., Pu Y., Zhao Y., Nie R., Guo L., Wu Y. (2022) Fructose and biotin co-modified liposomes for dual-targeting breast cancer. J. Liposome Res., 32(2), 119-128. CrossRef Scholar google search
Janani S.K., Dhanabal S.P., Sureshkumar R., Nikitha Upadhyayula S.S. (2022) Anti-nucleolin aptamer as a boom in rehabilitation of breast cancer. Curr. Pharm. Des., 28(38), 3114-3126. CrossRef Scholar google search
Yetisgin A.A., Cetinel S., Zuvin M., Kosar A., Kutlu O. (2020) Therapeutic nanoparticles and their targeted delivery applications. Molecules, 25(9), 2193. CrossRef Scholar google search
Bhattacharjee S. (2016) DLS and zeta potential — What they are and what they are not? J. Control. Release, 235, 337-351. CrossRef Scholar google search
Manaia E.B., Abuçafy M.P., Chiari-Andréo B.G., Silva B.L., Oshiro Junior J.A., Chiavacci L.A. (2017) Physicochemical characterization of drug nanocarriers. Int. J. Nanomed., 12, 4991-5011. CrossRef Scholar google search
Xian H.W., Sidik N.A.C., Saidur R. (2020) Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. Int. Commun. Heat Mass Transf., 110, 104389. CrossRef Scholar google search
Torkhovskaya T.I., Kostryukova L.V., Tereshkina Y.A., Tikhonova E.G., Morozevich G.E., Plutinskaya A.D., Lupatov A.Yu., Pankratov A.A. (2021) Chlorin e6 embedded in phospholipid nanoparticles equipped with specific peptides: Interaction with tumor cells with different aminopeptidase N expression. Biomed. Pharmacother., 134, 111154. CrossRef Scholar google search
Wang Y., Zheng Y., Zhang L., Wang Q., Zhang D. (2013) Stability of nanosuspensions in drug delivery. J. Control. Release, 172(3), 1126-1141. CrossRef Scholar google search
Gai Y., Jiang Y., Long Y., Sun L., Liu Q., Qin C., Zhang Y., Zeng D., Lan X. (2020) Evaluation of an integrin αvβ3 and aminopeptidase N dual-receptor targeting tracer for breast cancer imaging. Molecular Pharmaceutics, 17(1), 349-358. CrossRef Scholar google search
Das D., Koirala N., Li X., Khan N., Dong F., Zhang W., Mulay P., Shrikhande G., Puskas J., Drazba J., McLennan G. (2020) Screening of polymer-based drug delivery vehicles targeting folate receptors in triple-negative breast cancer. J. Vasc. Interv. Radiol., 31(11), 1866-1873. CrossRef Scholar google search
Yoshida T., Oide N., Sakamoto T., Yotsumoto S., Negishi Y., Tsuchiya S., Aramaki Y. (2006) Induction of cancer cell-specific apoptosis by folate-labeled cationic liposomes. J. Control. Release, 111(3), 325-332. CrossRef Scholar google search
Lanza P., Felding-Habermann B., Ruggeri Z.M., Zanetti M., Billetta R. (1997) Selective interaction of a conformationallyconstrained Arg-Gly-Asp (RGD) motif with the integrin receptor alphavbeta3 expressed on human tumor cells. Blood Cells Mol. Dis., 23(2), 230-241. CrossRef Scholar google search
Akhtar K., Broekelmann T.J., Song H., Turk J., Brett T.J., Mecham R.P., Adair-Kirk T.L. (2011) Oxidative modifications of the C-terminal domain of tropoelastin prevent cell binding. J. Biol. Chem., 286(15), 13574-13582. CrossRef Scholar google search