1. Voronezh State University, Voronezh, Russia 2. Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
Pesticides represent a serious problem for agricultural workers due to their neurotoxic effects. The aim of this study was to evaluate the ability of pharmacological oxidative phosphorylation uncouplers to reduce the effect of the difenoconazole fungicide on mitochondrial DNA (mtDNA) of various organs in mice. Injections of difenoconazole caused cognitive deficits in mice, and the protonophore 2,4-dinitrophenol (2,4-DNP) and Azur I (AzI), a demethylated metabolite of methylene blue (MB), prevented the deterioration of cognitive abilities in mice induced by difenoconazole. Difenoconazole increased the rate of reactive oxygen species (ROS) production, likely through inhibition of complex I of the mitochondrial respiratory chain. After intraperitoneal administration of difenoconazole lungs, testes and midbrain were most sensitive to the accumulation of mtDNA damage. In contrast, the cerebral cortex and hippocampus were not tolerant to the effects of difenoconazole. The protonophore 2,4-DNP reduced the rate of ROS formation and significantly reduced the amount of mtDNA damage caused by difenoconazole in the midbrain, and partially, in the lungs and testes. MB, an alternative electron carrier capable of bypassing inhibited complex I, had no effect on the effect of difenoconazole on mtDNA, while its metabolite AzI, a demethylated metabolite of MB, was able to protect the mtDNA of the midbrain and testes. Thus, mitochondria-targeted therapy is a promising approach to reduce pesticide toxicity for agricultural workers.
Chernyshova E.V., Potanina D.V., Sadovnikova I.S., Krutskikh E.P., Volodina D.E., Samoylova N.A., Gureev A.P. (2024) The study of the protective effect of mitochondrial uncouplers during acute toxicity of the fungicide difenoconazole in different organs of mice. Biomeditsinskaya Khimiya, 70(1), 41-51.
Chernyshova E.V. et al. The study of the protective effect of mitochondrial uncouplers during acute toxicity of the fungicide difenoconazole in different organs of mice // Biomeditsinskaya Khimiya. - 2024. - V. 70. -N 1. - P. 41-51.
Chernyshova E.V. et al., "The study of the protective effect of mitochondrial uncouplers during acute toxicity of the fungicide difenoconazole in different organs of mice." Biomeditsinskaya Khimiya 70.1 (2024): 41-51.
Chernyshova, E. V., Potanina, D. V., Sadovnikova, I. S., Krutskikh, E. P., Volodina, D. E., Samoylova, N. A., Gureev, A. P. (2024). The study of the protective effect of mitochondrial uncouplers during acute toxicity of the fungicide difenoconazole in different organs of mice. Biomeditsinskaya Khimiya, 70(1), 41-51.
References
Syromyatnikov M.Y., Gureev A.P., Starkova N.N., Savinkova O.V., Starkov A.A., Lopatin A.V., Popov V.N. (2020) Method for detection of mtDNA damages for evaluating of pesticides toxicity for bumblebees (Bombus terrestris L.). Pestic. Biochem. Physiol., 169, 104675. CrossRef Scholar google search
Sule R.O., Condon L., Gomes A.V. (2022) A common feature of pesticides: Oxidative stress — the role of oxidative stress in pesticide-induced toxicity. Oxid. Med. Cell. Longev., 2022, 5563759. CrossRef Scholar google search
Mostafalou S., Abdollahi M. (2013) Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol., 268(2), 157-177. CrossRef Scholar google search
Gureev A.P., Sitnikov V.V., Pogorelov D.I., Vitkalova I.Y., Igamberdiev A.U., Popov V.N. (2022) The effect of pesticides on the NADH-supported mitochondrial respiration of permeabilized potato mitochondria. Pestic. Biochem. Physiol., 183, 105056. CrossRef Scholar google search
Harutyunyan A.V., Kozina L.S. (2009) Mechanisms of free radical oxidation and its role in aging. Successes of Gerontology, 22, 104-116. Scholar google search
Skulachev V.P. (1999) Uncoupling of Respiration and Phosphorylation. In: Frontiers of Cellular Bioenergetics: Molecular Biology, Biochemistry, and Physiopathology (Papa S., Guerrieri F., Tager J.M., eds.), Kluwer Academic/ Plenum Press, pp. 89-118. CrossRef Scholar google search
Rajendran J., Purhonen J., Tegelberg S., Smolander O.-P., Mörgelin M., Rozman J., Gailus-Durner V., Fuchs H., Hrabe de Angelis M., Auvinen P., Mervaala E., Jacobs H.T., Szibor M., Fellman V., Kallijärvi J. (2019) Alternative oxidase-mediated respiration prevents lethal mitochondrial cardiomyopathy. EMBO Mol. Med., 11(1), e9456. CrossRef Scholar google search
Schirmer R.H., Adler H., Pickhardt M., Mandelkow E. (2011) Lest we forget you — methylene blue. Neurobiol. Aging, 32, 2325.e7-2325.e16. CrossRef Scholar google search
Gureev A.P., Syromyatnikov M.Yu., Ignatyeva D.A., Valuyskikh V.V., Solodskikh S.A., Panevina A.V., Gryaznova M.V., Kokina A.V., Popov V.N. (2020) Effect of long-term methylene blue treatment on the composition of mouse gut microbiome and its relationship with the cognitive abilities of mice. PLoS One, 15(11), e0241784. CrossRef Scholar google search
Gureev A.P., Shaforostova E.A., Popov V.N., Starkov A.A. (2019) Methylene blue does not bypass complex III antimycin block in mouse brain mitochondria. FEBS Lett., 593, 499-503. CrossRef Scholar google search
Gureev A.P., Shaforostova E.A., Starkov A.A., Popov V.N. (2017) Simplified qPCR method for detecting excessive mtDNA damage induced by exogenous factors. Toxicology, 382, 67-74. CrossRef Scholar google search
Mamane A., Baldi I., Tessier J.F., Raherison C., Bouvier G. (2015) Occupational exposure to pesticides and respiratory health. Eur. Respir. Rev., 24, 306-329. CrossRef Scholar google search
Rosanna D.P., Salvatore C. (2012) Reactive oxygen species, inflammation, and lung diseases. Curr. Pharm. Des., 18, 3889-3890. CrossRef Scholar google search
Khwanes S.A., Mohamed R.A., Ibrahim K.A., Abd El-Rahman H.A. (2022) Ginger reserves testicular spermatogenesis and steroidogenesis in difenoconazoleintoxicated rats by conducting oxidative stress, apoptosis and proliferation. Andrologia, 54, e14241. CrossRef Scholar google search
Koifman S., Koifman R.J., Meyer A. (2002) Human reproductive system disturbances and pesticide exposure in Brazil. Cad. Saude Publica, 18, 435-445. CrossRef Scholar google search
Jiang J., Chen L., Wu S., Lv L., Liu X., Wang Q., Zhao X. (2020) Effects of difenoconazole on hepatotoxicity, lipid metabolism and gut microbiota in zebrafish (Danio rerio). Environ. Pollut., 265, 114844. CrossRef Scholar google search
Zhu J., Liu C., Wang J., Liang Y., Gong X., You L., Ji C., Wang S.L., Wang C., Chi X. (2021) Difenoconazole induces cardiovascular toxicity through oxidative stress-mediated apoptosis in early life stages of zebrafish (Danio rerio). Ecotoxicol. Environ. Saf., 216, 112227. CrossRef Scholar google search
Liu F., Wang Y., Chen L., Bello B.K., Zhang T., Yang H., Li X., Pan E., Feng H., Dong J. (2022) Difenoconazole disrupts the blood-brain barrier and results in neurotoxicity in carp by inhibiting the Nrf2 pathway mediated ROS accumulation. Ecotoxicol. Environ. Saf., 244, 114081. CrossRef Scholar google search
Syromyatnikov M.Y., Kokina A.V., Lopatin A.V., Starkov A.A., Popov V.N. (2017) Evaluation of the toxicity of fungicides to flight muscle mitochondria of bumblebee (Bombus terrestris L.). Pestic. Biochem. Physiol., 135, 41-46. CrossRef Scholar google search
Gureev A.P., Shaforostova E.A., Laver D.A., Khorolskaya V.G., Syromyatnikov M.Y., Popov V.N. (2019) Methylene blue elicits non-genotoxic H2O2 production and protects brain mitochondria from rotenone toxicity. J. Appl. Biomed., 17, 107-114. CrossRef Scholar google search
Baynes J.W., Thorpe S.R. (2000) Glycoxidation and lipoxidation in atherogenesis. Free Radic. Biol. Med., 28, 1708-1716. CrossRef Scholar google search
Horowitz M.P., Milanese C., di Maio R., Hu X., Montero L.M., Sanders L.H., Tapias V., Sepe S., van Cappellen W.A., Burton E.A., Greenamyre J.T., Mastroberardino P.G. (2011) Single-cell redox imaging demonstrates a distinctive response of dopaminergic neurons to oxidative insults. Antioxid. Redox Signal., 15, 855-871. CrossRef Scholar google search
Filograna R., Lee S., Tiklová K., Mennuni M., Jonsson V., Ringnér M., Gillberg L., Sopova E., Shupliakov O., Koolmeister C., Olson L., Perlmann T., Larsson N.-G. (2021) Mitochondrial dysfunction in adult midbrain dopamine neurons triggers an early immune response. PLoS Genet., 17, e1009822. CrossRef Scholar google search
Trist B.G., Hare D.J., Double K.L. (2019) Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. Aging Cell, 18, e13031. CrossRef Scholar google search
Hegarty S.V., Sullivan A.M., O'Keeffe G.W. (2013) Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development. Dev. Biol., 379, 123-138. CrossRef Scholar google search
Collin F. (2019) Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci., 20, 2407. CrossRef Scholar google search
de Gray A. (2005) Reactive oxygen species production in the mitochondrial matrix: Implications for the mechanism of mitochondrial mutation accumulation. Rejuvenation Res., 8, 13-17. CrossRef Scholar google search
Mposhi A., van der Wijst M., Faber K.N., Rots M.G. (2017) Regulation of mitochondrial gene expression the epigenetic enigma. Front. Biosci., 22, 1099-1113. CrossRef Scholar google search
Abdel-Salam O.M.E., Youness E., Mohamed N., Shaffie N. (2017) The effect of 2,4-dinitrophenol on oxidative stress and neuronal damage in rat brain induced by systemic rotenone injection. Reactive Oxygen Species, 3, 135-147. CrossRef Scholar google search
Lee Y., Heo G., Lee K.M., Kim A.H., Chung K.W., Im E., Chung H.Y., Lee J. (2017) Neuroprotective effects of 2,4-dinitrophenol in an acute model of Parkinson's disease. Brain Res., 1663, 184-193. CrossRef Scholar google search
Geisler J.G., Marosi K., Halpern J., Mattson M.P. (2017) DNP, mitochondrial uncoupling, and neuroprotection: A little dab'll do ya. Alzheimers Dement., 13, 582-591. CrossRef Scholar google search
Stott S.R.W., Barker R.A. (2014) Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of Parkinson's disease. Eur. J. Neurosci., 39, 1042-1056. CrossRef Scholar google search
Wu B., Jiang M., Peng Q., Li G., Hou Z., Milne G.L., Mori S., Alonso R., Geisler J.G., Duan W. (2017) 2,4-DNP improves motor function, preserves medium spiny neuronal identity, and reduces oxidative stress in a mouse model of Huntington's disease. Exp. Neurol., 293, 83-90. CrossRef Scholar google search
Korde A.S., Pettigrew L.C., Craddock S.D., Maragos W.F. (2005) The mitochondrial uncoupler 2,4-dinitrophenol attenuates tissue damage and improves mitochondrial homeostasis following transient focal cerebral ischemia. J. Neurochem., 94, 1676-1684. CrossRef Scholar google search
Pandya J.D., Pauly J.R., Nukala V.N., Sebastian A.H., Day K.M., Korde A.S., Maragos W.F., Hall E.D., Sullivan P.G. (2007) Post-injury administration of mitochondrial uncouplers increases tissue sparing and improves behavioral outcome following traumatic brain injury in rodents. J. Neurotrauma, 24, 798-811. CrossRef Scholar google search
Patel S.P., Sullivan P.G., Pandya J.D., Rabchevsky A.G. (2009) Differential effects of the mitochondrial uncoupling agent, 2,4-dinitrophenol, or the nitroxide antioxidant, tempol, on synaptic or nonsynaptic mitochondria after spinal cord injury. J. Neurosci. Res., 87, 130-140. CrossRef Scholar google search
Wen Y., Li W., Poteet E.C., Xie L., Tan C., Yan L.-J., Ju X., Liu R., Qian H., Marvin M.A., Goldberg M.S., She H., Mao Z., Simpkins J.W., Yang S.-H. (2011) Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J. Biol. Chem., 286, 16504-16515. CrossRef Scholar google search
Krutskikh E.P., Potanina D.V., Samoylova N.A., Gryaznova M.V., Sadovnikova I.S., Gureev A.P., Popov V.N. (2022) Brain protection by methylene blue and its derivative, azur B, via activation of the Nrf2/ARE pathway in cisplatininduced cognitive impairment. Pharmaceuticals (Basel), 15, 815. CrossRef Scholar google search
Gureev A.P., Syromyatnikov M.Y., Gorbacheva T.M., Starkov A.A., Popov V.N. (2016) Methylene blue improves sensorimotor phenotype and decreases anxiety in parallel with activating brain mitochondria biogenesis in mid-age mice. Neurosci. Res., 113, 19-27. CrossRef Scholar google search
Haouzi P., McCann M., Tubbs N. (2020) Azure B as a novel cyanide antidote: Preclinical in-vivo studies. Toxicol. Rep., 7, 1459-1464. CrossRef Scholar google search
Pakavathkumar P., Sharma G., Kaushal V., Foveau B., LeBlanc A.C. (2015) Methylene blue inhibits caspases by oxidation of the catalytic cysteine. Sci. Rep., 5, 13730. CrossRef Scholar google search
Wainwright M., Amaral L. (2005) Review: The phenothiazinium chromophore and the evolution of antimalarial drugs. Tropical Medicine International Health, 10, 501-511. CrossRef Scholar google search