Renalase (RNLS) is a recently discovered protein that plays an important role in the regulation of blood pressure by acting inside and outside cells. Intracellular RNLS is a FAD-dependent oxidoreductase that oxidizes isomeric forms of β-NAD(P)H. Extracellular renalase lacking its N-terminal peptide and cofactor FAD exerts various protective effects via non-catalytic mechanisms. Certain experimental evidence exists in the literature that the RP220 peptide (a 20-mer peptide corresponding to the amino acid sequence RNLS 220–239) reproduces a number of non-catalytic effects of this protein, acting on receptor proteins of the plasma membrane. The possibility of interaction of this peptide with intracellular proteins has not been studied. Taking into consideration the known role of RNLS as a possible antihypertensive factor, the aim of this study was to perform proteomic profiling of the kidneys of normotensive and hypertensive rats using RP220 as an affinity ligand. Proteomic (semi-quantitative) identification revealed changes in the relative content of about 200 individual proteins in the kidneys of hypertensive rats bound to the affinity sorbent as compared to the kidneys of normotensive animals. Increased binding of SHR renal proteins to RP220 over the normotensive control was found for proteins involved in the development of cardiovascular pathology. Decreased binding of the kidney proteins from hypertensive animals to RP220 was noted for components of the ubiquitin-proteasome system, ribosomes, and cytoskeleton.
Buneeva O.A., Fedchenko V.I., Kaloshina S.A., Zavyalova M.G., Zgoda V.G., Medvedev A.E. (2024) Proteomic profiling of renal tissue of normo- and hypertensive rats with the renalase peptide RP220 as an affinity ligand. Biomeditsinskaya Khimiya, 70(3), 145-155.
Buneeva O.A. et al. Proteomic profiling of renal tissue of normo- and hypertensive rats with the renalase peptide RP220 as an affinity ligand // Biomeditsinskaya Khimiya. - 2024. - V. 70. -N 3. - P. 145-155.
Buneeva O.A. et al., "Proteomic profiling of renal tissue of normo- and hypertensive rats with the renalase peptide RP220 as an affinity ligand." Biomeditsinskaya Khimiya 70.3 (2024): 145-155.
Buneeva, O. A., Fedchenko, V. I., Kaloshina, S. A., Zavyalova, M. G., Zgoda, V. G., Medvedev, A. E. (2024). Proteomic profiling of renal tissue of normo- and hypertensive rats with the renalase peptide RP220 as an affinity ligand. Biomeditsinskaya Khimiya, 70(3), 145-155.
References
Xu J., Li G., Wang P., Velazquez H., Yao X., Li Y., Wu Y., Peixoto A., Crowley S., Desir G.V. (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J. Clin. Invest., 115(5), 1275–1280. CrossRef Scholar google search
Medvedev A.E., Veselovsky A.V., Fedchenko V.I. (2010) Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: Achievements and unsolved problems. Biochemistry (Moscow), 75(8), 951–958. CrossRef Scholar google search
Baroni S., Milani M., Pandini V., Pavesi G., Horner D., Aliverti A. (2013) Is renalase a novel player in catecholaminergic signaling? The mystery of the catalytic activity of an intriguing new flavoenzyme. Curr. Pharm. Des., 19, 2540–2551. CrossRef Scholar google search
Desir G.V., Peixoto A.J. (2014) Renalase in hypertension and kidney disease. Nephrol. Dial. Transplant., 29(1), 22–28. CrossRef Scholar google search
Moran G.R. (2016) The catalytic function of renalase: A decade of phantoms. Biochim. Biophys. Acta, 1864(1), 177–186. CrossRef Scholar google search
Beaupre B.A., Hoag M.R., Roman J., Forsterling F.H., Moran G.R. (2015) Metabolic function for human renalase: Oxidation of isomeric forms of beta-NAD(P)H that are inhibitory to primary metabolism. Biochemistry, 54(3), 795–806. CrossRef Scholar google search
Wang Y., Safirstein R., Velazquez H., Guo X.J., Hollander L., Chang J., Chen T.M., Mu J.J., Desir G.V. (2017) Extracellular renalase protects cells and organs by outside-in signalling. J. Cell Mol. Med., 21(7), 1260–1265. CrossRef Scholar google search
Kolodecik T.R., Reed A.M., Date K., Shugrue C.A., Patel V., Chung S.L., Desir G.V., Gorelick F.S. (2017) The serum protein renalase reduces injury in experimental pancreatitis. J. Biol. Chem., 292(51), 21047–21059. CrossRef Scholar google search
Wang L., Velazquez H., Chang J., Safirstein R., Desir G.V. (2015) Identification of a receptor for extracellular renalase. PLoS One, 10, e0122932. CrossRef Scholar google search
Pointer T.C., Gorelick F.S., Desir G.V. (2021) Renalase: A multi-functional signaling molecule with roles in gastrointestinal disease. Cells, 10(8), 2006. CrossRef Scholar google search
Medvedev A., Kopylov A., Fedchenko V., Buneeva O. (2020) Is renalase ready to become a biomarker of ischemia? Int. J. Cardiol., 307, 179. CrossRef Scholar google search
Fedchenko V.I., Veselovsky A.V., Kopylov A.T., Kaloshina S.A., Medvedev A.E. (2022) Renalase may be cleaved in blood. Are blood chymotrypsin-like enzymes involved? Medical Hypotheses, 165, 110895. CrossRef Scholar google search
Fedchenko V.I., Morozevich G.E., Medvedev A.E. (2023) The effect of renalase-derived peptides on viability of HepG2 and PC3 cells. Biomeditsinskaya Khimiya, 69(3), 184–187. CrossRef Scholar google search
Potts L., Phillips C., Hwang M., Fulcher S., Choi H. (2019) Rescue of human corneal epithelial cells after alkaline insult using renalase derived peptide, RP-220. Int. J. Ophthalmol., 12(11), 1667–1673. CrossRef Scholar google search
Wang L., Qi C., Shao X., Li S., Lin Q., Zhang M.,Wu B., Shen J., Li Z., Ni Z. (2019) RP220, a renalase peptide, attenuates lupus nephritis by anti-inflammatory in MRL/lpr mice. Available at SSRN: https://ssrn.com/abstract=3311837 or http://dx.doi.org/10.2139/ssrn.3311837. CrossRef Scholar google search
Stojanovic D., Stojanovic M., Milenkovic J., Velickov A., Ignjatovic A., Milojkovic M. (2023) The multi-faceted nature of renalase for mitochondrial dysfunction improvement in cardiac disease. Cells, 12(12), 1607. CrossRef Scholar google search
Fedchenko V.I., Kopylov A.T., Buneeva O.A., Kaloshin A.A., Zgoda V.G., Medvedev A.E. (2018) Proteomic profiling data of HEK293 proteins bound to human recombinant renalases-1 and -2. Data Brief., 21, 1477–1482. CrossRef Scholar google search
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254. CrossRef Scholar google search
Buneeva O.A., Kopylov A.T., Gnedenko O.V., Medvedeva M.V., Kapitsa I.G., Ivanova E.A., Ivanov A.S., Medvedev A.E. (2021) Changes in the mitochondrial subproteome of mouse brain Rpn13-binding proteins induced by the neurotoxin MPTP and the neuroprotector isatin. Biomeditsinskaya Khimiya, 67(1), 51–65. CrossRef Scholar google search
Buneeva O.A., Kapitsa I.G., Kazieva L.S., Vavilov N.E., Zgoda V.G., Medvedev A.E. (2023) Quantitative changes of brain isatin-binding proteins of rats with the rotenone-induced experimental parkinsonism. Biomeditsinskaya Khimiya, 69(3), 188–192. CrossRef Scholar google search
Buneeva O.A., Kapitsa I.G., Zgoda V.G., Medvedev A.E. (2023) Neuroprotective effects of isatin and afobazole in rats with rotenone-induced Parkinsonism are accompanied by increased brain levels of Triton X-100 soluble alpha-synuclein. Biomeditsinskaya Khimiya, 69(5), 290–299. CrossRef Scholar google search
Buneeva O.A., Fedchenko V.I., Kaloshina S.A., Zavyalova M.G., Zgoda V.G., Medvedev A.E. (2024) Comparative proteomic analysis of renal tissue of normotensive and hypertensive rats. Biomeditsinskaya Khimiya, 70(2), 89–98. CrossRef Scholar google search
Dakshinamurti K., Lal K.J., Ganguly P.K. (1998) Hypertension, calcium channel and pyridoxine (vitamin B6). Mol. Cell. Biochem., 188(1–2), 137–148. CrossRef Scholar google search
Tieu K., Perier C., Vila M., Caspersen C., Zhang H.P., Teismann P., Jackson-Lewis V., Stern D.M., Yan S.D., Przedborski S. (2004) L-3-hydroxyacyl-CoA dehydrogenase II protects in a model of Parkinson's disease. Ann. Neurol., 56(1), 51–60. CrossRef Scholar google search
Powell A.J., Read J.A., Banfield M.J., Gunn-Moore F., Yan S.D., Lustbader J., Stern A.R., Stern D.M., Brady R.L. (2000) Recognition of structurally diverse substrates by type II 3-hydroxyacyl-CoA dehydrogenase (HADH II)/ amyloid-beta binding alcohol dehydrogenase (ABAD). J. Mol. Biol., 303(2), 311–327. CrossRef Scholar google search
di Nicolantonio J.J., Lucan S.C., O'Keefe J.H. (2016) The evidence for saturated fat and for sugar related to coronary heart disease. Prog. Cardiovasc. Dis., 58(5), 464–472. CrossRef Scholar google search
di Nicolantonio J.J., Subramonian A.M., O'Keefe J.H. (2017) Added fructose as a principal driver of non-alcoholic fatty liver disease: A public health crisis. Open Heart, 4(2), 000631. CrossRef Scholar google search
Gómez-Baena G., Armstrong S.D., Halstead J.O., Prescott M., Roberts S.A., McLean L., Mudge J.M., Hurst J.L., Beynon R.J. (2019) Molecular complexity of the major urinary protein system of the Norway rat, Rattus norvegicus. Sci. Rep., 9(1), 10757. CrossRef Scholar google search
Sato M., Yanagisawa H., Nojima Y., Tamura J.,Wada O. (2002) Zn deficiency aggravates hypertension in spontaneously hypertensive rats: Possible role of Cu/Zn-superoxide dismutase. Clin. Exp. Hypertens., 24(5), 355–370. CrossRef Scholar google search
Yanagisawa H., Sato M., Nodera M., Wada O. (2004) Excessive zinc intake elevates systemic blood pressure levels in normotensive rats — potential role of superoxide-induced oxidative stress. J. Hypertens., 22(3), 543–550. CrossRef Scholar google search
Chakraborty S., Mandal J., Yang T., Cheng X., Yeo J.Y., McCarthy C.G., Wenceslau C.F., Koch L.G., Hill J.W., Vijay-Kumar M., Joe B. (2020) Metabolites and hypertension: Insights into hypertension as a metabolic disorder: 2019 Harriet Dustan Award. Hypertension, 75(6), 1386–1396. CrossRef Scholar google search
Liu S., Kormos B.L., Knafels J.D., Sahasrabudhe P.V., Rosado A., Sommese R.F., Reyes A.R., Ward J., Roth Flach R.J., Wang X., Buzon L.M., Reese M.R., Bhattacharya S.K., Omoto K., Filipski K.J. (2023) Structural studies identify angiotensin II receptor blocker-like compounds as branched-chain ketoacid dehydrogenase kinase inhibitors. J. Biol. Chem., 299(3), 102959. CrossRef Scholar google search
Quinonez S.C., Thoene J.G. (2014) Dihydrolipoamide dehydrogenase deficiency. In: GeneReviews® [Internet] (Adam M.P., Feldman J, Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., eds), Seattle (WA), University of Washington, Seattle, 1993–2024. Scholar google search
Guerreiro J.R., Lameu C., Oliveira E.F., Klitzke C.F., Melo R.L., Linares E., Augusto O., Fox J.W., Lebrun I., Serrano S.M., Camargo A.C. (2009) Argininosuccinate synthetase is a functional target for a snake venom anti-hypertensive peptide: Role in arginine and nitric oxide production. J. Biol. Chem., 284(30), 20022–20033. CrossRef Scholar google search
Zheng X., Chen M., Li X., Yang P., Zhao X., Ouyang Y., Yang Z., Liang M., Hou E., Tian Z. (2019) Insufficient fumarase contributes to hypertension by an imbalance of redox metabolism in Dahl salt-sensitive rats. Hypertens. Res., 42(11), 1672–1682. CrossRef Scholar google search
Tian Z., Liu Y., Usa K., Mladinov D., Fang Y., Ding X., Greene A.S., Cowley A.W. Jr., Liang M. (2009) Novel role of fumarate metabolism in dahl-salt sensitive hypertension. Hypertension, 54(2), 255–260. CrossRef Scholar google search
Ganetzky R., Stojinski C. (2019) Mitochondrial short-chain enoyl-CoA hydratase 1 deficiency. In: GeneReviews® [Internet] (Adam M.P., Feldman J., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., eds.). Seattle (WA), University of Washington, Seattle, 1993–2024. Scholar google search
Bonnet S., Paulin R. (2019) Involvement of PFKFB3 in pulmonary arterial hypertension pathogenesis. Is it all about glycolysis? Am. J. Respir. Crit. Care Med., 200(5), 532–534. CrossRef Scholar google search
Kang J., Brajanovski N., Chan K.T., Xuan J., Pearson R.B., Sanij E. (2021) Ribosomal proteins and human diseases: Molecular mechanisms and targeted therapy. Signal Transduct. Target. Ther., 6(1), 323. CrossRef Scholar google search
Bhavsar R.B., Makley L.N., Tsonis P.A. (2010) The other lives of ribosomal proteins. Human Genomics, 4(5), 327–344. CrossRef Scholar google search
Calvier L., Herz J., Hansmann G. (2022) Interplay of low-density lipoprotein receptors, LRPs, and lipoproteins in pulmonary hypertension. JACC Basic Transl. Sci., 7(2), 164–180. CrossRef Scholar google search
Longoni M., Kantarci S., Donnai D., Pober B.R. (2008) Donnai-Barrow syndrome. In: GeneReviews® [Internet] (Adam M.P., Feldman J., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., eds.), Seattle (WA), University of Washington, Seattle, 1993–2024. Scholar google search
Sendra J., Llorente-Cortés V., Costales P., Huesca-Gómez C., Badimon L. (2008) Angiotensin II upregulates LDL receptorrelated protein (LRP1) expression in the vascular wall: A new pro-atherogenic mechanism of hypertension. Cardiovasc. Res., 78(3), 581–589. CrossRef Scholar google search
Wang L., Hou E., Wang Z., Sun N., He L., Chen L., Liang M., Tian Z. (2014) Analysis of metabolites in plasma reveals distinct metabolic features between Dahl salt-sensitive rats and consomic SS.13(BN) rats. Biochem. Biophys. Res. Commun., 450(1), 863–869. CrossRef Scholar google search
Martin-Lorenzo M., Martinez P.J., Baldan-Martin M., Ruiz-Hurtado G., Prado J.C., Segura J., de la Cuesta F., Barderas M.G., Vivanco F., Ruilope L.M., Alvarez-Llamas G. (2017) Citric acid metabolism in resistant hypertension: Underlying mechanisms and metabolic prediction of treatment response. Hypertension, 70(5), 1049–1056. CrossRef Scholar google search
Barawkar D.A., Meru A., Bandyopadhyay A., Banerjee A., Deshpande A.M., Athare C., Koduru C., Khose G., Gundu J., Mahajan K., Patil P., Kandalkar S.R., Niranjan S., Bhosale S., De S., Mukhopadhyay S., Chaudhary S., Koul S., Singh U., Chugh A., Palle V.P., Mookhtiar K.A., Vacca J., Chakravarty P.K., Nargund R.P., Wright S.D., Roy S., Graziano M.P., Singh S.B., Cully D., Cai T.Q. (2011) Potent and selective inhibitors of long chain l-2-hydroxy acid oxidase reduced blood pressure in DOCA salt-treated rats. ACS Med. Chem. Lett., 2(12), 919–923. CrossRef Scholar google search
Prasun P., LoPiccolo M.K., Ginevic I. (2022) Long-chain Hydroxyacyl-CoA dehydrogenase deficiency/ trifunctional protein deficiency. In: GeneReviews® [Internet] (Adam M.P., Feldman .J, Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., eds.). Seattle (WA), University of Washington, Seattle, 1993–2024. Scholar google search
Meng C., Jin X., Xia L., Shen S.M., Wang X.L., Cai J., Chen G.Q., Wang L.S., Fang N.Y. (2009) Alterations of mitochondrial enzymes contribute to cardiac hypertrophy before hypertension development in spontaneously hypertensive rats. J. Proteome Res., 8(5), 2463–2475. CrossRef Scholar google search
Li G.H., Shi Y., Chen Y., Sun M., Sader S., Maekawa Y., Arab S., Dawood F., Chen M., de Couto G., Liu Y., Fukuoka M., Yang S., da Shi M., Kirshenbaum L.A., McCulloch C.A., Liu P. (2009) Gelsolin regulates cardiac remodeling after myocardial infarction through DNAse I-mediated apoptosis. Circ. Res., 104(7), 896–904. CrossRef Scholar google search
Jana S., Aujla P., Hu M., Kilic T., Zhabyeyev P., McCulloch C.A., Oudit G.Y., Kassiri Z. (2021) Gelsolin is an important mediator of Angiotensin II-induced activation of cardiac fibroblasts and fibrosis. FASEB J., 35(10), 21932. CrossRef Scholar google search
Lai Q., Liu F.M., Rao W.L., Yuan G.Y., Fan Z.Y., Zhang L., Fu F., Kou J.P., Yu B.Y., Li F. (2022) Aminoacylase-1 plays a key role in myocardial fibrosis and the therapeutic effects of 20(S)-ginsenoside Rg3 in mouse heart failure. Acta Pharmacol. Sin., 43(8), 2003–2015. CrossRef Scholar google search
Oliveira-Paula G.H., Pereira S.C., Tanus-Santos J.E., Lacchini R. (2019) Pharmacogenomics and hypertension: Current insights. Pharmgenomics Pers. Med., 12, 341–359. CrossRef Scholar google search
Kim Y.H., Hwang J.H., Noh J.R., Gang G.T., Kim D.H., Son H.Y., Kwak T.H., Shong M., Lee I.K., Lee C.H. (2011) Activation of NAD(P)H:quinone oxidoreductase ameliorates spontaneous hypertension in an animal model via modulation of eNOS activity. Cardiovasc. Res., 91(3), 519–527. CrossRef Scholar google search
Kim Y.H., Hwang J.H., Kim K.S., Noh J.R., Gang G.T., Seo Y., Nam K.H., Kwak T.H., Lee H.G., Lee C.H. (2015) NAD(P)H:quinone oxidoreductase 1 activation reduces blood pressure through regulation of endothelial nitric oxide synthase acetylation in spontaneously hypertensive rats. Am. J. Hypertens., 28(1), 50–57. CrossRef Scholar google search
Liao K.A., Rangarajan K.V., Bai X., Taylor J.M., Mack C.P. (2021) The actin depolymerizing factor destrin serves as a negative feedback inhibitor of smooth muscle cell differentiation. Am. J. Physiol. Heart Circ. Physiol., 321(5), 893–904. CrossRef Scholar google search
Stanczyk P.J., Tatekoshi Y., Shapiro J.S., Nayudu K., Chen Y., Zilber Z., Schipma M., de Jesus A., Mahmoodzadeh A., Akrami A., Chang H.C., Ardehali H. (2023) DNA damage and nuclear morphological changes in cardiac hypertrophy are mediated by SNRK through actin depolymerization. Circulation, 148(20), 1582–1592. CrossRef Scholar google search
Lee M.J., Stephenson D.A., Groves M.J., Sweeney M.G., Davis M.B., An S.F., Houlden H., Salih M.A., Timmerman V., de Jonghe P., Auer-Grumbach M., di Maria E., Scaravilli F., Wood N.W., Reilly M.M. (2003) Hereditary sensory neuropathy is caused by a mutation in the delta subunit of the cytosolic chaperonin-containing T-complexpeptide-1 (Cct4) gene. Hum. Mol. Genet., 12(15), 1917–1925. CrossRef Scholar google search
Jeong S.J., Park J.G., Oh G.T. (2021) Peroxiredoxins as potential targets for cardiovascular disease. Antioxidants (Basel), 10(8), 1244. CrossRef Scholar google search
Jiang L., Gong Y., Hu Y., You Y., Wang J., Zhang Z., Wei Z., Tang C. (2020) Peroxiredoxin-1 overexpression attenuates doxorubicininduced cardiotoxicity by inhibiting oxidative stress and cardiomyocyte apoptosis. Oxid. Med. Cell. Longev., 2020, 2405135. CrossRef Scholar google search
Martinez-Pinna R., Ramos-Mozo P., Madrigal-Matute J., Blanco-Colio L.M., Lopez J.A., Calvo E., Camafeita E., Lindholt J.S., Meilhac O., Delbosc S., Michel J.B., Vega de Ceniga M., Egido J., Martin-Ventura J.L. (2011) Identification of peroxiredoxin-1 as a novel biomarker of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol., 31(4), 935–943. CrossRef Scholar google search
Zhou M., Guo J., Li S., Li A., Fang Z., Zhao M., Zhang M., Wang X. (2023) Effect of peroxiredoxin 1 on the regulation of trophoblast function by affecting autophagy and oxidative stress in preeclampsia. J. Assist. Reprod. Genet., 40(7), 1573–1587. CrossRef Scholar google search
Park J.-G., Yoo J.-Y., Jeong S.-J., Choi J.-H., Lee M.-R., Lee M.-N., Hwa Lee J., Kim H.C., Jo H., Yu D.-Y., Kang S.W., Rhee S.G., Lee M.-H., Oh G.T. (2011) Peroxiredoxin 2 deficiency exacerbates atherosclerosis in apolipoprotein Edeficient mice. Circ. Res., 109, 739–749. CrossRef Scholar google search
Moore K., Moore R., Wang C., Norris R.A. (2020) Tugging at the heart strings: The septin cytoskeleton in heart development and disease. J. Cardiovasc. Dev. Dis., 7(1), 3. CrossRef Scholar google search
Sutendra G., Dromparis P., Bonnet S., Haromy A., McMurtry M.S., Bleackley R.C., Michelakis E.D. (2011) Pyruvate dehydrogenase inhibition by the inflammatory cytokine TNFα contributes to the pathogenesis of pulmonary arterial hypertension. J. Mol. Med. (Berlin), 89(8), 771–783. CrossRef Scholar google search
Magyar C.E., Zhang Y., Holstein-Rathlou N.H., McDonough A.A. (2000) Proximal tubule Na transporter responses are the same during acute and chronic hypertension. Am. J. Physiol. Renal. Physiol., 279(2), 358–369. CrossRef Scholar google search
Kennedy H., Haack T.B., Hartill V., Mataković L., Baumgartner E.R., Potter H., Mackay R., Alston C.L., O'Sullivan S., McFarland R., Connolly G., Gannon C., King R., Mead S., Crozier I., Chan W., Florkowski C.M., Sage M., Höfken T., Alhaddad B., Kremer L.S., Kopajtich R., Feichtinger R.G., Sperl W., Rodenburg R.J., Minet J.C., Dobbie A., Strom T.M., Meitinger T., George P.M., Johnson C.A., Taylor R.W., Prokisch H., Doudney K., Mayr J.A. (2016) Sudden cardiac death due to deficiency of the mitochondrial inorganic pyrophosphatase PPA2. Am. J. Hum. Genet., 99(3), 674–682. CrossRef Scholar google search
Kim H.K., Mizuno M., Vongpatanasin W. (2019) Phosphate, the forgotten mineral in hypertension. Curr. Opin. Nephrol. Hypertens., 28(4), 345–351. CrossRef Scholar google search
Iovine B., Iannella M.L., Bevilacqua M.A. (2011) Damage-specific DNA binding protein 1 (DDB1): A protein with a wide range of functions. Int. J. Biochem. Cell Biol., 43(12), 1664–1667. CrossRef Scholar google search
Ranchoux B., Meloche J., Paulin R., Boucherat O., Provencher S., Bonnet S. (2016) DNA damage and pulmonary hypertension. Int. J. Mol. Sci., 17(6), 990. CrossRef Scholar google search
Liu R., Proud C.G. (2016) Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases. Acta Pharmacol. Sin., 37(3), 285–294. CrossRef Scholar google search
Pascal A., Gallaud E., Giet R., Benaud C. (2022) Annexin A2 and Ahnak control cortical NuMA-dynein localization and mitotic spindle orientation. J. Cell Sci., 135(9), 259344. CrossRef Scholar google search
Predmore J.M., Wang P., Davis F., Bartolone S., Westfall M.V., Dyke D.B., Pagani F., Powell S.R., Day S.M. (2010) Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation, 121(8), 997–1004. CrossRef Scholar google search
Li Y., Bian M., Gu S., Wang X., Wen J., Lian N., Jiang M., Qi X. (2023) Investigation of the ubiquitin proteasome system in pulmonary arterial hypertension. Authorea, March 27. CrossRef Scholar google search
Drews O., Taegtmeyer H. (2014) Targeting the ubiquitinproteasome system in heart disease: the basis for new therapeutic strategies. Antioxid. Redox Signal., 21(17), 2322–2343. CrossRef Scholar google search
Malashicheva A., Perepelina K. (2021) Diversity of nuclear lamin A/C action as a key to tissue-specific regulation of cellular identity in health and disease. Front. Cell Dev. Biol., 9, 761469. CrossRef Scholar google search
Shi X., Jiang X., Chen C., Zhang Y., Sun X. (2022) The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: Implications for therapy. Pharmacol. Res., 184, 106452. CrossRef Scholar google search
Daugeron M.C., Kressler D., Linder P. (2001) Dbp9p, a putative ATP-dependent RNA helicase involved in 60S-ribosomal-subunit biogenesis, functionally interacts with Dbp6p. RNA, 7(9), 1317-1334. CrossRef Scholar google search
Meng L.B., Hu G.F., Shan M.J., Zhang Y.M., Yu Z.M., Liu Y.Q., Xu H.X., Wang L., Gong T., Liu D.P. (2021) Citrate synthase and OGDH as potential biomarkers of atherosclerosis under chronic stress. Oxid. Med. Cell. Longev., 2021, 9957908. CrossRef Scholar google search
Wang X., Chen C.F., Baker P.R., Chen P.L., Kaiser P., Huang L. (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry, 46, 3553-3565. CrossRef Scholar google search
Verma R., Chen S., Feldman R., Schieltz D., Yates J., Dohmen J., Deshaies R.J. (2000) Proteasomal proteomics: Identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell, 11, 3425–3439. CrossRef Scholar google search
Guerrero C., Milenkovic T., Przulj N., Kaiser P., Huang L. (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc. Natl. Acad. Sci. USA, 105, 13333–13338. CrossRef Scholar google search
Buneeva O.A., Kopylov A.T., Medvedev A.E. (2023) Proteasome interactome and its role in the mechanisms of brain plasticity. Biochemistry (Moscow), 88(3), 319–336. CrossRef Scholar google search
Meul T., Berschneider K., Schmitt S., Mayr C.H., Mattner L.F., Schiller H.B., Yazgili A.S., Wang X., Lukas C., Schlesser C., Prehn C., Adamski J., Graf E., Schwarzmayr T., Perocchi F., Kukat A., Trifunovic A., Kremer L., Prokisch H., Popper B., von Toerne C., Hauck S.M., Zischka H., Meiners S. (2020) Mitochondrial regulation of the 26S proteasome. Cell Rep., 32, 108059. CrossRef Scholar google search
Enenkel C., Kang R.W., Wilfling F., Ernst O.P. (2022) Intracellular localization of the proteasome in response to stress conditions. J. Biol. Chem., 298, 102083. CrossRef Scholar google search
Rousseau A., Bertolotti A. (2018) Regulation of proteasome assembly and activity in health and disease. Nat. Rev. Mol. Cell Biol., 19, 697–712. CrossRef Scholar google search