1. Institute of Biomedical Chemistry, Moscow, Russia 2. Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia 3. Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Polio Institute settlement, Moscow, Russia 4. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Polio Institute settlement, Moscow, Russia 5. CEO Teocortex LLC, Moscow, Russia
Electrochemical profiling of formaldehyde-inactivated poliovirus particles demonstrated a relationship between the D-antigen concentration and the intensity of the maximum amplitude currents of the poliovirus samples. The resultant signal was therefore identified as electrochemical oxidation of the surface proteins of the poliovirus. Using registration of electrooxidation of amino acid residues of the capsid proteins, a comparative electrochemical analysis of poliovirus particles inactivated by electrons accelerated with doses of 5 kGy, 10 kGy, 15 kGy, 25 kGy, 30 kGy at room temperature was carried out. An increase in the radiation dose was accompanied by an increase in electrooxidation signals. A significant increase in the signals of electrooxidation of poliovirus capsid proteins was detected upon irradiation at doses of 15–30 kGy. The data obtained suggest that the change in the profile and increase in the electrooxidation signals of poliovirus capsid proteins are associated with an increase in the degree of structural reorganization of surface proteins and insufficient preservation of the D-antigen under these conditions of poliovirus inactivation.
Agafonova L.E., Shumyantseva V.V., Ivin Yu.Yu., Piniaeva A.N., Kovpak A.A., Ishmukhametov A.A., Budnik S.V., Churyukin R.S., Zhdanov D.D., Archakov A.I. (2024) Electrochemical profiling of poliovirus particles inactivated by chemical method and ionizing radiation. Biomeditsinskaya Khimiya, 70(3), 161-167.
Agafonova L.E. et al. Electrochemical profiling of poliovirus particles inactivated by chemical method and ionizing radiation // Biomeditsinskaya Khimiya. - 2024. - V. 70. -N 3. - P. 161-167.
Agafonova L.E. et al., "Electrochemical profiling of poliovirus particles inactivated by chemical method and ionizing radiation." Biomeditsinskaya Khimiya 70.3 (2024): 161-167.
Agafonova, L. E., Shumyantseva, V. V., Ivin, Yu. Yu., Piniaeva, A. N., Kovpak, A. A., Ishmukhametov, A. A., Budnik, S. V., Churyukin, R. S., Zhdanov, D. D., Archakov, A. I. (2024). Electrochemical profiling of poliovirus particles inactivated by chemical method and ionizing radiation. Biomeditsinskaya Khimiya, 70(3), 161-167.
References
Chen M., Zhang X.-E. (2021) Construction and applications of SARS-CoV-2 pseudoviruses: A mini review. Int. J. Biol. Sci., 17(6), 1574–1580. CrossRef Scholar google search
Geng Q., Tai W., Baxter V.K., Shi J., Wan Y., Zhang X., Montgomery S.A., Taft-Benz S.A., Anderson E.J., Knight A.C., Dinnon K.H., Leist S.R., Baric R.S., Shang J., Hong S.-W., Drelich A., Tseng C.-T.K., Jenkins M., Heise M., Du L., Li F. (2021) Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. PLOS Pathogens, 17(9), e1009897. CrossRef Scholar google search
Zhdanov D.D., Ivin Yu.Yu., Shishparenok A.N., Kraevskiy S.V., Kanashenko S.L., Agafonova L.E., Shumyantseva V.V., Gnedenko O.V., Pinyaeva A.N., Kovpak A.A., Ishmukhametov A.A., Archakov A.I. (2023) Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example. Biomeditsinskaya Khimiya, 69(5), 253–280. CrossRef Scholar google search
Rezapkin G., Dragunsky E., Chumakov K. (2005) Improved ELISA test for determination of potency of Inactivated Poliovirus Vaccine (IPV). Biologicals, 33(1), 17–27. CrossRef Scholar google search
Yin H., Kauffman K., Anderson D. (2017) Delivery technologies for genome editing. Nat. Rev. Drug Discov., 16, 387–399. CrossRef Scholar google search
Kononova A.A. (2020) Psevdovirusnaya sistema na osnove virusa vezikulyarnogo stomatita dlya poiska protivovirusnykh sredstv, deystvuyushchikh na virusnye poverkhnostnye belki. Diss. kand. nauk, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk. Scholar google search
González-Davis O., Villagrana-Escareño M.V., Trujillo M.A., Gama P., Chauhan K., Vazquez-Duhalt R. (2023) Virus-like nanoparticles as enzyme carriers for Enzyme Replacement Therapy (ERT). Virology, 580, 73–87. CrossRef Scholar google search
Wilton T., Dunn G., Eastwood D., Minor P.D., Martin J. (2014) Effect of formaldehyde inactivation on poliovirus. J.Virology, 88(20), 11955–11964. CrossRef Scholar google search
Fertey J., Thoma M., Beckmann J., Bayer L., Finkensieper J., Reißhauer S., Berneck B.S., Issmail L., Schönfelder J., Casado J.P., Poremba A., Rögner F.-H., Standfest B., Makert G.R., Walcher L., Kistenmacher A.-K., Fricke S., Grunwald T., Ulbert S. (2020) Automated application of low energy electron irradiation enables inactivation of pathogen- and cell-containing liquids in biomedical research and production facilities. Sci. Rep., 10(1), 12786. CrossRef Scholar google search
Jiang S.D., Pye D., Cox J.C. (1986) Inactivation of poliovirus with β-propiolactone. J. Biol. Stand., 14(2), 103–109. CrossRef Scholar google search
Sobhanie E., Salehnia F., Xu G., Hamidipanah Y., Arshian S., Firoozbakhtian A., Hosseini M., Ganjali M.R., Hanif S. (2022) Recent trends and advancements in electrochemiluminescence biosensors for human virus detection. TrAC Trends Anal. Chem., 157, 116727. CrossRef Scholar google search
Ribeiro B.V., Cordeiro T.A.R., Oliveira e Freitas G.R., Ferreira L.F., Franco D.L. (2020) Biosensors for the detection of respiratory viruses: A review. Talanta Open, 2, 100007. CrossRef Scholar google search
Martins G., Gogola J.L., Budni L.H., Janegitz B.C., Marcolino-Junior L.H., Bergamini M.F. (2021) 3D-printed electrode as a new platform for electrochemical immunosensors for virus detection. Anal. Chim. Acta, 1147, 30–37. CrossRef Scholar google search
Pividori M. (2000) Electrochemical genosensor design: Immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens. Bioelectron., 15(5–6), 291–303. CrossRef Scholar google search
Ciftci S., Cánovas R., Neumann F., Paulraj T., Nilsson M., Crespo G.A., Madaboosi N. (2020) The sweet detection of rolling circle amplification: Glucose-based electrochemical genosensor for the detection of viral nucleic acid. Biosens. Bioelectron., 151, 112002. CrossRef Scholar google search
Agafonova L., Zhdanov D., Gladilina Y., Kanashenko S., Shumyantseva V. (2022) A pilot study on an electrochemical approach for assessing transient DNA transfection in eukaryotic cells. J. Electroanal. Chem., 920, 116635. CrossRef Scholar google search
Agafonova L.E., Zhdanov D.D., Gladilina Y.A., Shishparenok A.N., Shumyantseva V.V. (2024) Electrochemical approach for the analysis of DNA degradation in native DNA and apoptotic cells. Heliyon, 10(3), e25602. CrossRef Scholar google search
Piniaeva A., Ignatyev G., Kozlovskaya L., Ivin Y., Kovpak A., Ivanov A., Shishova A., Antonova L., Khapchaev Y., Feldblium I., Ivanova O., Siniugina A., Ishmukhametov A. (2021) Immunogenicity and safety of inactivated Sabin-strain polio vaccine “PoliovacSin”: Clinical trials phase I and II. Vaccines, 9(6), 565. CrossRef Scholar google search
Kovpak A.A., Ivin Y.Y., Piniaeva A.N., Khapchaev Y.K., Ozherelkov S.V., Belyakova A.V., Ishmukhametov A.A. (2021) Application of ultrafiltration membranes for purification and concentration of Sabin poliovirus type 1. Journal of Microbiology, Epidemiology and Immunobiology, 98(2), 135–143. CrossRef Scholar google search
Piniaeva A.N., Kovpak A.A., Ivin Y.Y., Sandzhieva S.H., Shishova A.A., Tcelykh I.O., Vasilenko V.E., Kaa K.V., Mazhed Zh.H., Khapchaev Yu.Kh., Siniugina A.A., Ishmukhametov A.A. (2022) Application of ion exchange chromatography in the development of technology to obtain inactivated poliovirus vaccine. Epidemiology and Vaccinal Prevention, 21(5), 107–119. CrossRef Scholar google search
Piniaeva A.N., Kovpak A.A., Ivin Y.Y., Shishova A.A., Sorokin A.A., Prostova M.A., Belyakova A.V., Siniugina A.A., Ishmukhametov A.A., Hapchaev Y.H., Gmyl A.P. (2021) Selection of sorbent for poliovirus vaccine strain concentrate purification by gel filtration. Biotekhnologiya, 37(6), 84–94. CrossRef Scholar google search
Kende M., Robbins M.L. (1965) Titration and neutralization of poliovirus in micro tissue culture under increased carbon dioxide. Appl. Microbiol., 13(6), 1026–1029. CrossRef Scholar google search
Recommendations for the production and control of poliomyelitis vaccine (inactivated). Retrieved October 12, 2023, from https://www.who.int/publications/m/item/recommendations-for-the-production-andcontrolofpoliomyelitis- vaccine-(inactivated). Scholar google search
Brabec V., Mornstein V. (1980) Electrochemical behaviour of proteins at graphite electrodes. II. Electrooxidation of amino acids. Biophys. Chem., 12(2), 159–165. CrossRef Scholar google search