Endothelial dysfunction underlies the pathogenesis of many diseases, primarily cardiovascular diseases. Epidemiological studies have shown an inverse dependence between the plasma level of high-density lipoproteins (HDL) and cardiovascular diseases. The results of experimental studies indicate that the antiatherogenic effect of HDL is associated not only with their participation in the reverse transport of excess cholesterol, but also with their regulatory effect on the functions of cells of various organs and tissues, including endothelial cells. The purpose of this review is to consider recent data on the participation of plasma receptors and related intracellular signaling pathways in the mechanism of protective effect of HDL on endothelial cell functions. Understanding the mechanisms of cell function regulation under the influence of HDL is an important step for the development of new ways of pharmacological correction of impaired endothelial functions and creation of effective endothelial protection drugs.
Download PDF:
Keywords: high density lipoproteins, apolipoprotein A-I, signaling pathways, endotelial dysfunction
Citation:
Poteryaeva O.N., Usynin I.F. (2024) Molecular mechanisms of the regulatory action of high-density lipoproteins on the endothelial function. Biomeditsinskaya Khimiya, 70(4), 206-217.
Poteryaeva O.N. et al. Molecular mechanisms of the regulatory action of high-density lipoproteins on the endothelial function // Biomeditsinskaya Khimiya. - 2024. - V. 70. -N 4. - P. 206-217.
Poteryaeva O.N. et al., "Molecular mechanisms of the regulatory action of high-density lipoproteins on the endothelial function." Biomeditsinskaya Khimiya 70.4 (2024): 206-217.
Poteryaeva, O. N., Usynin, I. F. (2024). Molecular mechanisms of the regulatory action of high-density lipoproteins on the endothelial function. Biomeditsinskaya Khimiya, 70(4), 206-217.
References
Cabou C., Honorato P., Briceño L., Ghezali L., Duparc T., León M., Combes G., Frayssinhes L., Fournel A., Abot A., Masri B., Parada N., Aguilera V., Aguayo C., Knauf C., González M., Radojkovic C., Martinez L.O. (2019) Pharmacological inhibition of the F1-ATPase/P2Y1 pathway suppresses the effect of apolipoprotein A1 on endothelial nitric oxide synthesis and vasorelaxation. Acta Physiol., 226(3), e13268. CrossRef Scholar google search
Jomard A., Osto E. (2020) High density lipoprotein: Metabolism, function, and therapeutic potential. Front. Cardiovasc. Med., 7(39), 1–12. CrossRef Scholar google search
Metelskaya V.A. (2021) Functional diversity of high-density lipoproteins: Finding the golden mean. Ateroscleroz, 17(2), 61–71. CrossRef Scholar google search
Nofer J.-R. (2015) Signal transduction by HDL: Agonists, receptors, and signaling cascades. Handbook Exp. Pharmacol., 224, 229–256. CrossRef Scholar google search
Perova N.V. (2017) Atheromarkers of high-density lipoproteins. Part II. High-density lipoproteins: structure, composition, physicochemical and physiological antiatherogenic properties, their mechanisms and markers (a review of literature). Profilakticheskaja meditsina, 20(4), 37–44. CrossRef Scholar google search
Panin L.E., Usynin I.F. (2008) Role of glucocorticoids and resident liver macrophages in induction of tyrosine aminotransferase. Biochemistry (Moscow), 73(3), 305–309. CrossRef Scholar google search
Usynin I.F., Poteryaeva O.N., Russkikh G.S., Zubova A.V., Boiko K.Yu., Polyakov L.M. (2018) Apolipoprotein A-I stimulates secretion of insulin and matrix metalloproteinases by islets of Langerhans. Biomeditsinskaya Khimiya, 64(2), 195–200. CrossRef Scholar google search
Marsche G., Stadler J.T., Kargl J., Holzer M. (2022) Understanding myeloperoxidase-induced damage to HDL structure and function in the vessel wall: Implications for HDL-based therapies. Antioxidants, 11(3), 556. CrossRef Scholar google search
Robert J., Osto E., von Eckardstein A. (2021) The endothelium is both a target and a barrier of HDL’s protective functions. Cells, 10(5), 1041. CrossRef Scholar google search
Torkhovskaya T.I., Kudinov V.A., Zakharova T.S., Markin S.S. (2018) Dysfunctional high-density lipoproteins: Role in atherogenesis and potential targets for phospholipid therapy. Kardiologiia, 58(3), 73–83. CrossRef Scholar google search
Poteryaeva O.N., Usynin I.F. (2022) Dysfunctional high-density lipoproteins in diabetes mellitus. Problemy Endokrinologii, 68(4), 69–77. CrossRef Scholar google search
Vaisar T., Couzens E., Hwang A., Russell M., Barlow C.E., de Fina L.F., Hoofnagle A.N., Kim F. (2018) Type 2 diabetes is associated with loss of HDL endothelium protective functions. PLoS ONE, 13(3), e0192616. CrossRef Scholar google search
Poteryaeva O.N., Usynin I.F. (2021) Therapeutic approaches to restoring the antiatherogenic function of high density lipoproteins. Yakut Medical J., 3, 98–103. CrossRef Scholar google search
Takata K., di Bartolo B.A., Nicholls S.J. (2018) High-density lipoprotein infusions. Cardiol. Clin., 36(2), 311–315. CrossRef Scholar google search
Xu W., Qian M., Huang C., Cui P., Li W., Du Q., Yi S., Shi X., Guo Y., Zheng J., Liu D., Lin D. (2019) Comparison of mechanisms of endothelial cell protections between highdensity lipoprotein and apolipoprotein A-I mimetic peptide. Front. Pharmacol., 10, 817. CrossRef Scholar google search
Wei C., Wan L., Yan Q., Wang X., Zhang J., Yang X., Zhang Y., Fan C., Li D., Deng Y., Sun J., Gong J., Yang X., Wang Y., Wang X., Li J., Yang H., Li H., Zhang Z., Wang R., Du P., Zong Y., Yin F., Zhang W., Wang N., Peng Y., Lin H., Feng J., Qin C., Chen W., Gao Q., Zhang R., Cao Y., Zhong H. (2020) HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat. Metab., 2(12), 1391–1400. CrossRef Scholar google search
Hoekstra M. (2017) SR-BI as target in atherosclerosis and cardiovascular disease — a comprehensive appraisal of the cellular functions of SR-BI in physiology and disease. Atherosclerosis, 258, 153–161. CrossRef Scholar google search
Yu L., Dai Y., Mineo C. (2021) Novel functions of endothelial scavenger receptor class B type I. Curr. Atheroscler. Rep., 23(2), 6. CrossRef Scholar google search
Mineo C., Shaul P.W. (2013) Regulation of signal transduction by HDL. J. Lipid. Res., 54(9), 2315–2324. CrossRef Scholar google search
Kimura T., Mogi C., Tomura H., Kuwabara A., Im D.-S., Sato K., Kurose H., Murakami M., Okajima F. (2008) Induction of scavenger receptor class B type I is critical for simvastatin enhancement of high-density lipoprotein-induced anti-inflammatory actions in endothelial cells. J. Immunol., 181(10), 7332–7340. CrossRef Scholar google search
Mineo C., Shaul P.W. (2007) Role of high-density lipoprotein and scavenger receptor B type I in the promotion of endothelial repair. Trends Cardiovasc. Med., 17(5), 156–161. CrossRef Scholar google search
Assanasen C., Mineo C., Seetharam D., Yuhanna I.S., Marcel Y.L., Connelly M.A., Williams D.L., de la Llera-Moya M., Shaul P.W., Silver D.L. (2005) Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor-BI mediate HDL-initiated signaling. J. Clin. Invest., 115(4), 969–977. CrossRef Scholar google search
Zhang Q-H., Zu X-Y., Cao R-X., Liu J-H., Mo Z-C., Zeng Y., Li Y.B., Xiong S.L., Liu X., Liao D.F., Yi G.H. (2012) An involvement of SR-B1 mediated PI3K-Akt-eNOS signaling in HDL-induced cyclooxygenase 2 expression and prostacyclin production in endothelial cells. Biochem. Biophys. Res. Commun., 420(1), 17–23. CrossRef Scholar google search
Ruiz M., Frej C., Holmer A., Guo L.J., Tran S., Dahlback B. (2017) High-density lipoprotein-associated apolipoprotein M limits endothelial infammation by delivering sphingosine-1- phosphate to the sphingosine-1-phosphate receptor 1. Arterioscler. Thromb. Vasc. Biol., 37(1), 118–129. CrossRef Scholar google search
Sposito A.C., de Lima-Junior J.C., Moura F.A., Barreto J., Bonilha I., Santana M., Virginio V.W., Sun L., Carvalho L.S.F., Soares A.A.S., Nadruz W., Feinstein S.B., Nofer J.R., Zanotti I., Kontush A., Remaley A.T. (2019) Reciprocal multifaceted interaction between HDL (high-density lipoprotein) and myocardial infarction. Arterioscler. Thromb. Vasc. Biol., 39(8), 1550–1564. CrossRef Scholar google search
Liu M., Allegood J., Zhu X., Seo J., Gebre A.K., Boudyguina E., Cheng D., Chuang C.C., Shelness G.S., Spiegel S., Parks J.S. (2015) Uncleaved apoM signal peptide is required for formation of large apoM/sphingosine 1- phosphate (S1P)-enriched HDL particles. J. Biol. Chem., 290(12), 7861–7870. CrossRef Scholar google search
Cartier A., Hla T. (2019) Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science, 366, eaar5551. CrossRef Scholar google search
Chun J., Giovannoni G., Hunter S.F. (2021) Sphingosine 1- phosphate receptor modulator therapy for multiple sclerosis: Differential downstream receptor signalling and clinical profile effects. Drugs, 81(2), 207–231. CrossRef Scholar google search
Zhang G., Yang L., Kim G.S., Ryan K., Lu S., O’Donnell R.K., Spokes K., Shapiro N., Aird W.C., Kluk M.J., Yano K., Sanchez T. (2013) Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood., 122(3), 443–455. CrossRef Scholar google search
Skoura A., Sanchez T., Claffey K., Mandala S.M., Proia R.L., Hla T. (2007) Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J. Clin. Invest., 117(9), 2506–2516. CrossRef Scholar google search
Blaho V.A., Hla T. (2014) An update on the biology of sphingosine 1-phosphate receptors. J. Lipid Res., 55(8), 1596–1608. CrossRef Scholar google search
Santos-Gallego C.G., Vahl T.P., Goliasch G., Picatoste B., Arias T., Ishikawa K., Njerve I.U., Sanz J., Narula J., Sengupta P.P., Hajjar R.J., Fuster V., Badimon J.J. (2016) Sphingosine-1-phosphate receptor agonist fingolimod increases myocardial salvage and decreases adverse postinfarction left ventricular remodeling in a porcine model of ischemia/reperfusion. Circulation, 133(10), 954–966. CrossRef Scholar google search
Theilmeier G., Schmidt C., Herrmann J., Keul P., Schäfers M., Herrgott I., Mersmann J., Larmann J., Hermann S., Stypmann J., Schober O., Hildebrand R., Schulz R., Heusch G., Haude M., von Wnuck Lipinski K., Herzog C., Schmitz M., Erbel R., Chun J., Levkau B. (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation, 114(13), 1403–1409. CrossRef Scholar google search
Igarashi J., Michel T. (2008) S1P and eNOS regulation. Biochim. Biophys. Acta, 1781(9), 489–495. CrossRef Scholar google search
Krishna S.M., Seto S.W., Moxon J.V., Rush C., Walker P.J., Norman P.E., Golledge J. (2012) Fenofibrate increases high-density lipoprotein and sphingosine 1 phosphate concentrations limiting abdominal aortic aneurysm progression in a mouse model. Am. J. Pathol., 181(2), 706–718. CrossRef Scholar google search
Kimura T., Tomura H., Sato K., Ito M., Matsuoka I., Im D.-S., Kuwabara A. Mogi C., Itoh H., Kurose H., Murakami M., Okajima F. (2010) Mechanism and role of high density lipoprotein-induced activation of AMP-activated protein kinase in endothelial cells. J. Biol. Chem., 285(7), 4387–4397. CrossRef Scholar google search
Galvani S., Sanson M., Blaho V.A., Swendeman S.L., Obinata H., Conger H., Dahlbäck B., Kono M., Proia R.L., Smith J.D., Hla T. (2015) HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Science Signaling, 8(389), ra79. CrossRef Scholar google search
Jin F., Hagemann N., Sun L., Wu J., Doeppner T.R., Dai Y., Hermann D.M. (2018) High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation. Angiogenesis, 21(2), 381–394. CrossRef Scholar google search
del Gaudio I., Sreckovic I., Zardoya-Laguardia P., Bernhart E., Christoffersen C., Frank S., Marsche G., Illanes S.E., Wadsack C. (2020) Circulating cord blood HDL-S1P complex preserves the integrity of the feto-placental vasculature. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1865(4), 158632. CrossRef Scholar google search
Sattler K., Gräler M., Keul P., Weske S., Reimann C.M., Jindrová H., Kleinbongard P., Sabbadini R., Bröcker-Preuss M., Erbel R., Heusch G., Levkau B. (2015) Defects of high-density lipoproteins in coronary artery disease caused by low sphingosine-1-phosphate content: Correction by sphingosine-1-phosphate-loading. J. Am. Coll. Cardiol., 66(13), 1470–1485. CrossRef Scholar google search
Jia C., Anderson J.L.C., Gruppen E.G., Lei Y., Bakker S.J.L., Dullaart R.P.F., Tietge U.J.F. (2021) High-density lipoprotein antiinflammatory capacity and incident cardiovascular events. Circulation, 143(20), 1935–1945. CrossRef Scholar google search
Christensen P.M., Liu C.H., Swendeman S.L., Obinata H., Qvortrup K., Nielsen L.B., Hla T., di Lorenzo A., Christoffersen C. (2016) Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1. FASEB J., 30(6), 2351–2359. CrossRef Scholar google search
Mathiesen Janiurek M., Soylu-Kucharz R., Christoffersen C., Kucharz K., Lauritzen M. (2019) Apolipoprotein M-bound sphingosine1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis. eLife, 8, e49405. CrossRef Scholar google search
Christoffersen C., Federspiel C.K., Borup A., Christensen P.M., Madsen A.N., Heine M., Nielsen C.H., Kjaer A., Holst B., Heeren J., Nielsen L.B. (2018) The apolipoprotein M/S1P axis controls triglyceride metabolism and brown fat activity. Cell Reports, 22(1), 175–188. CrossRef Scholar google search
Wilkerson B.A., Argraves K.M. (2014) The role of sphingosine-1-phosphate in endothelial barrier function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1841(10), 1403–1412. CrossRef Scholar google search
Butler M.J. (2020) Dysfunctional HDL takes its Toll on the endothelial glycocalyx. Kidney Int., 97(3), 450–452. CrossRef Scholar google search
Hesse B., Rovas A., Buscher K., Kusche-Vihrog K., Brand M., di Marco G.S., Kielstein J.T., Pavenstädt H., Linke W.A., Nofer J.R., Kümpers P., Lukasz A. (2020) Symmetric dimethylarginine in dysfunctional high-density lipoprotein mediates endothelial glycocalyx breakdown in chronic kidney disease. Kidney Int., 97(3), 502–515. CrossRef Scholar google search
Riwanto M., Rohrer L., von Eckardstein A., Landmesser U. (2015) Dysfunctional HDL: From structure functionrelationships to biomarkers. Handb. Exp. Pharmacol., 224, 337–366. CrossRef Scholar google search
Wang H., Huang H., Ding S.F. (2018) Sphingosine-1-phosphate promotes the proliferation and attenuates apoptosis of endothelial progenitor cells via S1PR1/S1PR3/PI3K/Akt pathway. Cell. Biol. Intern., 42(11), 1492–1502. CrossRef Scholar google search
Vorobev R.I., Shumakher G.I., Khoreva M.A., Osipova I.V., Korenovskiy Yu.V. (2008) Caveolae and caveolins role in health and disease. Kardiovaskuljarnaja Terapija i Profilaktika, 7(8), 105–111. Scholar google search
Terasaka N., Westerterp M., Koetsveld J., Fernández-Hernando C., Yvan-Charvet L., Wang N., Sessa W.C., Tall A.R. (2010) ATP-binding cassette transporter G1 and high-density lipoprotein promote endothelial NO synthesis through a decrease in the interaction of caveolin-1 and endothelial NO synthase. Arter. Thromb. Vasc. Biol., 30(11), 2219–2225. CrossRef Scholar google search
Radulović S., Gottschalk B., Hörl G., Zardoya-Laguardia P., Schilcher I., Hallström S., Vujić N., Schmidt K., Trieb M., Graier W.F., Malli R., Kratky D., Marsche G., Frank S. (2020) Endothelial lipase increases eNOS activating capacity of high-density lipoprotein. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1865(4), 158612. CrossRef Scholar google search
Westerterp M., Tsuchiya K., Tattersall I.W., Fotakis P., Bochem A.E., Molusky M.M., Ntonga V., Abramowicz S., Parks J.S., Welch C.L., Kitajewski J., Accili D., Tall A.R. (2016) Deficiency of ATP-binding cassette transporters A1 and G1 in endothelial cells accelerates atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol., 36(7), 1328–1337. CrossRef Scholar google search
Castaing-Berthou A., Malet N., Radojkovic C., Caboua C., Gayrala S., Martinez L.O., Laffarguea M. (2017) PI3Kβ plays a key role in apolipoprotein A-I-induced endothelial cell proliferation through activation of the Ecto-F1-ATPase/P2Y1 receptors. Cell Physiol. Biochem., 42(2), 579–593. CrossRef Scholar google search
Schilcher I., Ledinski G., Radulović S., Hallström S., Eichmann T., Madl T., Zhang F., Leitinger G., Kolb-Lenz D., Darnhofer B., Birner-Gruenberger R., Wadsack C., Kratky D., Marsche G., Frank S., Cvirn G. (2019) Endothelial lipase increases antioxidative capacity of high-density lipoprotein. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1864(10), 1363–1374. CrossRef Scholar google search
Robert J., Lehner M., Frank S., Perisa D., von Eckardstein A., Rohrer L. (2013) Interleukin 6 stimulates endothelial binding and transport of high-density lipoprotein through induction of endothelial lipase. Arterioscler. Thromb. Vasc. Biol., 33(12), 2699–2706. CrossRef Scholar google search
Tatematsu S., Francis S.A., Natarajan P., Rader D.J., Saghatelian A., Brown J.D., Michel T., Plutzky J. (2013) Endothelial lipase is a critical determinant of high-density lipoprotein-stimulated sphingosine 1-phosphate-dependent signaling in vascular endothelium. Arterioscler. Thromb. Vasc. Biol., 33(8), 1788–1794. CrossRef Scholar google search
Uzlova E.V., Zimatkin S.M. (2020) ATP synthase of cells. Uspehi Sovremennoj Biologii, 140(5), 433–442. CrossRef Scholar google search
Martinez L.O., Najib S., Perret B., Cabou C., Lichtenstein L. (2015) Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins.Atherosclerosis, 238(1), 89–100. CrossRef Scholar google search
Cabou C., Martinez L.O. (2022) The interplay of endothelial P2Y receptors in cardiovascular health: From vascular physiology to pathology. Int. J. Mol. Sci., 23(11), 5883. CrossRef Scholar google search
Strassheim D., Verin A., Batori R., Nijmeh H., Burns N., Kovacs-Kasa A., Umapathy N.S., Kotamarthi J., Gokhale Y.S., Karoor V., Stenmark K.R., Gerasimovskaya E. (2020) P2Y purinergic receptors, endothelial dysfunction, and cardiovascular diseases. Int. J. Mol. Sci., 21(18), 6855. CrossRef Scholar google search
Cavelier C., Ohnsorg P.M., Rohrer L., von Eckardstein A. (2012) The beta-chain of cell surface F0F1-ATPase modulates apoA-I and HDL transcytosis through aortic endothelial cells. Arter. Thromb. Vasc. Biol., 32(1), 131–139. CrossRef Scholar google search
Vantourout P., Radojkovic C., Lichtenstein L., Pons V., Champagne E., Martinez L.O. (2010) Ecto-F1-ATPase: A moonlighting protein complex and an unexpected apoA-I receptor.World J. Gastroenterol., 16(47), 5925–5935. CrossRef Scholar google search
Radojkovic C., Genoux A., Pons V., Combes G., de Jonge H., Champagne E., Rolland C., Perret B., Collet X., Tercé F., Martinez L.O. (2009) Stimulation of cell surface F1-ATPase activity by apolipoprotein A-I inhibits endothelial cell apoptosis and promotes proliferation. Arterioscler. Thromb. Vasc. Biol., 29(7), 1125–1130. CrossRef Scholar google search
González-Pecchi V., Valdés S., Pons V., Honorato P., Martinez L.O., Lamperti L., Aguayo C., Radojkovic C. (2015) Apolipoprotein A-I enhances proliferation of human endothelial progenitor cells and promotes angiogenesis through the cell surface ATP synthase. Microvasc. Res., 98, 9–15. CrossRef Scholar google search
Yang N., YaoS., Wang M., Jiao P., Zhang Y., Qin S. (2013) Apolipoprotein A-I mimetic peptide reverse D-4 F improves the biological functions of mouse bone marrow-derived late EPCs via PI3K/AKT/eNOS pathway. Mol. Cell. Biochem., 377(1–2), 229–236. CrossRef Scholar google search
Bravo G.Á., Cedeño R.R., Casadevall M.P., Ramió-Torrentà M.P. (2022) Sphingosine-1-phosphate (S1P) and S1P signaling pathway modulators, from current insights to future perspectives (Review). Cells, 11(13), 2058. CrossRef Scholar google search
Nikitin A.V. (2013) Molecular and cellular mechanisms of Fingolimod action. Antibiotiki i Himioterapija, 58(11–12), 38–42. Scholar google search
Skoura A., Sanchez T., Claffey K., Mandala S.M., Proia R.L., Hla T. (2007) Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J. Clin. Invest., 117, 2506–2516. CrossRef Scholar google search
Cardner M., Yalcinkaya M., Goetze S., Luca E., Balaz M., Hunjadi M., Hartung J., Shemet A., Kränkel N., Radosavljevic S., Keel M., Othman A., Karsai G., Hornemann T., Claassen M., Liebisch G., Carreira E., Ritsch A., Landmesser U., Krützfeldt J., Wolfrum C., Wollscheid B., Beerenwinkel N., Rohrer L., von Eckardstein A. (2020) Structure-function relationships of HDL in diabetes and coronary heart disease. JCI Insight., 5(1), e131491. CrossRef Scholar google search
Bhale A.S., Venkataraman K. (2022) Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics. Biomed. Pharmacother., 154, 113634. CrossRef Scholar google search
Pan B., Kong J., Jin J., Kong J., He Y., Dong S., Ji L., Liu D., He D., Kong L., Jin D.K., Willard B., Pennathur S., Zheng L. (2016) A novel anti-inflammatory mechanism of high density lipoprotein through up-regulating annexin A1 in vascular endothelial cells. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids, 1861(6), 501–512. CrossRef Scholar google search
Michell D.L., Vickers K.C. (2016) Lipoprotein carriers of microRNAs. Biochim. Biophys. Acta, 1861(12 Pt B), 2069–2074. CrossRef Scholar google search