Bioinformatic identification of proteins with altered PTM levels in a mouse line established to study the mechanisms of the development of fibromuscular dysplasia

  
Voronina A.I.1, Miroshnichenko Yu.V.1, Skvortsov V.S.1

1. Institute of Biomedical Chemistry, Moscow, Russia
Section: Short Communication
DOI: 10.18097/PBMC20247004248      PubMed Id: 39239899
Year: 2024  Volume: 70  Issue: 4  Pages: 248-255
Data from a mass spectrometry experiment of a mouse line developed to study the mechanisms of fibromuscular dysplasia and deposited by d'Escamard et al. in ProteomeXchange (PXD051750) have been analyzed. Identification of peptides with post-translational modifications (PTMs) was repeated using more stringent conditions than in the original work. The following modifications were considered during analysis of changes in the PTM levels in experimental and control groups of mice: acetylation of lysine residue and N-terminal protein peptide, ubiquitination of lysine residue, phosphorylation of serine, threonine and tyrosine residues, and deamination of asparagine and glutamine residues. The multistage analysis resulted in selection of 23 proteins with PTMs for which different levels of modification between experimental and control groups could be assumed. These included six proteins with N-terminal protein acetylation, which were particularly interesting: P80318 (T-complex protein 1 subunit gamma), P43274 (Histone H1.4), P97823 (Acyl-protein thioesterase 1), P63242 (Eukaryotic translation initiation factor 5A-1), Q3UMT1 (Protein phosphatase 1 regulatory subunit 12C), Q9D8Y0 (EF-hand domain-containing protein D2). Thus, repeated bioinformatic analysis of the data deposited in the specialized databases resulted in detection of changes in the level of N-terminal acetylation of proteins that might be functionally significant in the mechanisms underlying the development of fibromuscular dysplasia.
Download PDF:  
Keywords: posttranslational modifications, fibromuscular dysplasia, bioinformatics
Supplementary materials:
Citation:

Voronina, A. I., Miroshnichenko, Yu. V., Skvortsov, V. S. (2024). Bioinformatic identification of proteins with altered PTM levels in a mouse line established to study the mechanisms of the development of fibromuscular dysplasia. Biomeditsinskaya Khimiya, 70(4), 248-255.
References  
 2024 (vol 70)
 2023 (vol 69)
 2022 (vol 68)
 2021 (vol 67)
 2020 (vol 66)
 2019 (vol 65)
 2018 (vol 64)
 2017 (vol 63)
 2016 (vol 62)
 2015 (vol 61)
 2014 (vol 60)
 2013 (vol 59)
 2012 (vol 58)
 2011 (vol 57)
 2010 (vol 56)
 2009 (vol 55)
 2008 (vol 54)
 2007 (vol 53)
 2006 (vol 52)
 2005 (vol 51)
 2004 (vol 50)
 2003 (vol 49)