1. Institute of Biomedical Chemistry, Moscow, Russia 2. MIREA — Russian Technological University, Moscow, Russia 3. Koltzov Institute of Developmental Biology, Moscow, Russia 4. Blokhin National Medical Research Center of Oncology, Moscow, Russia 5. Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russia 6. Endocrinology Research Centre, Moscow, Russia
Using analytical technologies it is possible now to measure the entire diversity of molecules even in a small amount of biological samples. Metabolomic technologies simultaneously analyze thousands of low-molecular substances in a single drop of blood. Such analytical performance opens new possibilities for clinical laboratory diagnostics, still relying on the measurement of only a limited number of clinically significant substances. However, there are objective difficulties hampering introduction of metabolomics into clinical practice. The Institute of Biomedical Chemistry (IBMC), consolidating the efforts of leading scientific and medical organizations, has achieved success in this area by developing a clinical blood metabogram (CBM). CBM opens opportunities to obtain overview on the state of the body with the detailed individual metabolic characteristics of the patient. A number of scientific studies have shown that the CBM is an effective tool for monitoring the state of the body, and based on the CBM patterns (signatures), it is possible to diagnose and monitor the treatment of many diseases. Today, the CBM creation determines the current state and prospects of clinical metabolomics in Russia. This article, dedicated to the 80th anniversary of IBMC, is a review of these achievements focused on a discussion of their implementation in clinical practice.
Download PDF:
Keywords: clinical metabolomics, clinical blood metabogram, diagnosis of diseases, mass spectrometry
Lokhov P.G. et al. Clinical metabolomics: current state and prospects in Russia // Biomeditsinskaya Khimiya. - 2024. - V. 70. -N 5. - P. 329-341.
Lokhov P.G. et al., "Clinical metabolomics: current state and prospects in Russia." Biomeditsinskaya Khimiya 70.5 (2024): 329-341.
Lokhov, P. G., Balashova, E. E., Trifonova, O. P., Maslov, D. L., Lokhov, A. P., Ponomarenko, E. A., Lisitsa, A. V., Ugrumov, M. V., Stilidi, I. S., Kushlinskii, N. E., Nikityuk, D. B., Tutelyan, V. A., Shestakova, M. V., Dedov, I. I., Archakov, A. I. (2024). Clinical metabolomics: current state and prospects in Russia. Biomeditsinskaya Khimiya, 70(5), 329-341.
References
Newman-Toker D.E., Schaffer A.C., Yu-Moe C.W., Nassery N., Saber Tehrani A.S., Clemens G.D., Wang Z., Zhu Y., Fanai M., Siegal D. (2019) Serious misdiagnosis-related harms in malpractice claims: The “Big Three” — vascular events, infections, and cancers. Diagnosis (Berlin), 6(3), 227–240. CrossRef Scholar google search
Newman-Toker D.E., Tucker L. (2018) SIDM policy committee roadmap for research to improve diagnosis, part 1: Converting national academy of medicine recommendations into policy action. Society to improve diagnosis in medicine, Evanston, IL, pp. 1–11. Scholar google search
Miller B.T., Balogh E., Ball J. (eds.) (2015) Improving Diagnosis in Healthcare. National Academies Press, Washington, DC, USA, 472 p. Scholar google search
Newman-Toker D.E., Nassery N., Schaffer A.C., Yu-Moe C.W., Clemens G.D., Wang Z., Zhu Y., Saber Tehrani A.S., Fanai M., Hassoon A., Siegal D. (2024) Burden of serious harms from diagnostic error in the USA. BMJ Qual. Saf., 33(2), 109–120. CrossRef Scholar google search
McShane L.M., Cavenagh M.M., Lively T.G., Eberhard D.A., Bigbee W.L., Williams P.M., Mesirov J.P., Polley M.-Y.C., Kim K.Y., Tricoli J.V., Taylor J.M.G., Shuman D.J., Simon R.M., Doroshow J.H., Conley B.A. (2013) Criteria for the use of omics-based predictors in clinical trials. Nature, 502(7471), 317–320. CrossRef Scholar google search
Rochat B. (2015) Is there a future for metabotyping in clinical laboratories? Bioanalysis, 7(1), 5–8. CrossRef Scholar google search
Bujak R., Struck-Lewicka W., Markuszewski M.J., Kaliszan R. (2015) Metabolomics for laboratory diagnostics. J. Pharm. Biomed. Anal., 113, 108–120. CrossRef Scholar google search
Tolstikov V., Akmaev V.R., Sarangarajan R., Narain N.R., Kiebish M.A. (2017) Clinical metabolomics: A pivotal tool for companion diagnostic development and precision medicine. Expert Rev. Mol. Diagn., 17(5), 411–413. CrossRef Scholar google search
Pinu F.R., Goldansaz S.A., Jaine J. (2019) Translational metabolomics: Current challenges and future opportunities. Metabolites, 9(6), 108. CrossRef Scholar google search
Ashrafian H., Sounderajah V., Glen R., Ebbels T., Blaise B.J., Kalra D., Kultima K., Spjuth O., Tenori L., Salek R.M., Kale N., Haug K., Schober D., Rocca-Serra P., O'Donovan C., Steinbeck C., Cano I., de Atauri P., Cascante M. (2021) Metabolomics: The stethoscope for the twenty-first century. Med. Princ. Pract., 30(4), 301–310. CrossRef Scholar google search
Mussap M., Noto A., Piras C., Atzori L., Fanos V. (2021) Slotting metabolomics into routine precision medicine. Expert Rev. Precis. Med. Drug Dev., 6(3), 173–187. CrossRef Scholar google search
Lokhov P.G., Trifonova O.P., Maslov D.L., Lichtenberg, S., Balashova E.E. (2021) Personal metabolomics: A global challenge. Metabolites, 11(11), 715. CrossRef Scholar google search
Beger R.D., Dunn W., Schmidt M.A., Gross S.S., Kirwan J.A., Cascante M., Brennan, L., Wishart D.S., Oresic M., Hankemeier T., Broadhurst D.I., Lane A.N., Suhre K., Kastenmüller G., Sumner S.J., Thiele I., Fiehn O., Kaddurah-Daouk R. (2016) Metabolomics enables precision medicine: “A white paper, community perspective”. Metabolomics, 12(10), 149. CrossRef Scholar google search
Lichtenberg S., Trifonova O.P., Maslov D.L., Balashova E.E., Lokhov P.G. (2021) Metabolomic laboratory-developed tests: Current status and perspectives. Metabolites, 11(7), 423. CrossRef Scholar google search
Lokhov P.G., Balashova E.E., Trifonova O.P., Maslov D.L., Grigoriev A.I., Ponomarenko E.A., Archakov A.I. (2023) Mass spectrometric blood metabogram: Acquisition, characterization, and prospects for application. Int. J. Mol. Sci., 24(2), 1736. CrossRef Scholar google search
Bar N., Korem T., Weissbrod O., Zeevi D.A., Rothschild D., Leviatan S., Kosower N., Lotan-Pompan M., Weinberger A., le Roy C.I., Menni C., Visconti A., Falchi M., Spector T.D., IMI DIRECT consortium, Adamski J., Franks P.W., Pedersen O., Segal E. (2020) A reference map of potential determinants for the human serum metabolome. Nature, 588(7836), 135–140. CrossRef Scholar google search
Coelho G.D.P., Ayres L.F.A., Barreto D.S., Henriques B.D., Prado M.R.M.C., Passos C.M.D. (2021) Acquisition of microbiota according to the type of birth: An integrative review. Rev. Lat. Am. Enfermagem, 29, e3446. CrossRef Scholar google search
Lif Holgerson P., Harnevik L., Hernell O., Tanner A.C.R., Johansson I. (2011) Mode of birth delivery affects oral microbiota in infants. J. Dent. Res., 90(10), 1183–1188. CrossRef Scholar google search
de la Cuesta-Zuluaga J., Kelley S.T., Chen Y., Escobar J.S., Mueller N.T., Ley R.E., McDonald D., Huang S., Swafford A.D., Knight R., Thackray V.G.. (2019) Age- and sex-dependent patterns of gut microbial diversity in human adults. mSystems, 4(4), e00261-19. CrossRef Scholar google search
Kim Y.S., Unno T., Kim B.Y., Park M.S. (2020) Sex differences in gut microbiota. World J. Mens. Health, 38(1), 48–60. CrossRef Scholar google search
Lokhov P.G., Balashova E.E., Trifonova O.P., Maslov D.L., Shestakova E.A., Shestakova M.V, Dedov I.I. (2024) Application of clinical blood metabogram to type 2 diabetes mellitus. Metabolites, 14(3), 168. CrossRef Scholar google search
Lokhov P.G., Trifonova O.P., Balashova E.E., Maslov D.L., Ugrumov M.V., Archakov A.I. (2024) Application of clinical blood metabogram for diagnosis of early-stage Parkinson's disease: A pilot study. Front. Mol. Biosci, 11, 1407974. CrossRef Scholar google search
Schreier J., Feeney R., Keeling P. (2019) Diagnostics reform and harmonization of clinical laboratory testing. J. Mol. Diagn., 21(5), 737–745. CrossRef Scholar google search
Spitzenberger F., Patel J., Gebuhr I., Kruttwig K., Safi A., Meisel C. (2022) Laboratory-developed tests: Design of a regulatory strategy in compliance with the international state-of-the-art and the regulation (EU) 2017/746 (EU IVDR [In vitro diagnostic medical device regulation]). Ther. Innov. Regul. Sci., 56(1), 47–64. CrossRef Scholar google search
Graden K.C., Bennett S.A., Delaney S.R., Gill H.E., Willrich M.A.V. (2021) A high-level overview of the regulations surrounding a clinical laboratory and upcoming regulatory challenges for laboratory developed tests. Lab. Med., 52(4), 315–328. CrossRef Scholar google search
Genzen J.R. (2019) Regulation of laboratory-developed tests. Am. J. Clin. Pathol., 152(2), 122–131. CrossRef Scholar google search
Centers for Medicare and Medicaid Services. Background document on CLIA oversight of LDTs. Retrieved May 16, 2024, from: https://www.cms.gov/ Regulations-and-Guidance/Legislation/CLIA/Downloads/ LDT-and-CLIA_FAQs.pdf. Scholar google search
Nightingale Health Plc. Next-generation health risk management for informed decision-making. Retrieved May 16, 2024, from: https://pro.nightingalehealth.com. Scholar google search
Ajinomoto Group. AminoIndex®|The amino acid profile as a marker for cancer screening. Retrieved May 16, 2024, from: https://www.ajinomoto.com/innovation/action/aminoindex. Scholar google search