The review summarizes recent achievements and future prospects in the use of chronobiotics for regulating circadian rhythms regulation. Special attention is paid to the mechanisms' action, their classification, and the impact of chemical interventions on the biological clock. Chronobiotics defined as a diverse group of compounds capable of restoring disrupted circadian functions, addressing challenges such as irregular work schedules, artificial light exposure or ageing. The review categorizes these compounds by their pharmacological effects, molecular targets, and chemical structures, underlining their ability to enhance or inhibit key circadian components like CLOCK, BMAL1, PER, and CRY. A particular focus is placed on the therapeutic applications of chronobiotics, including their potential for treating sleep disorders, metabolic issues, and age-related rhythm disturbances, underscoring their wide-ranging applicability in health care. Chronobiotic compounds have promising roles in maintaining physiological rhythms, supporting healthy aging, and enhancing personalised health care. Given their diverse therapeutic potential, chronobiotics are positioned as a significant avenue for further clinical application, marking them as a crucial area of ongoing research and innovation.
Solovev I.A. et al. Chronobiotics: classifications of existing circadian clock modulators, future perspectives // Biomeditsinskaya Khimiya. - 2024. - V. 70. -N 6. - P. 381-393.
Solovev I.A. et al., "Chronobiotics: classifications of existing circadian clock modulators, future perspectives." Biomeditsinskaya Khimiya 70.6 (2024): 381-393.
Solovev, I. A., Golubev, D. A. (2024). Chronobiotics: classifications of existing circadian clock modulators, future perspectives. Biomeditsinskaya Khimiya, 70(6), 381-393.
References
Vandenberghe A., Lefranc M., Furlan A. (2022) An overview of the circadian clock in the frame of chronotherapy: From bench to bedside. Pharmaceutics, 14(7), 1424. CrossRef Scholar google search
Chawla S., Oster H., Duffield G.E., Maronde E., Guido M.E., Chabot C., Dkhissi-Benyahya O., Provencio I., Goel N., Youngstedt S.D., Mak N.Z.-C., Caba M., Nikhat A., Chakrabarti S., Wang L., Davis S.J. (2024) Reflections on several landmark advances in circadian biology. J. Circadian Rhythms, 22(1), 1. CrossRef Scholar google search
de Assis L.V.M., Oster H. (2021) The circadian clock and metabolic homeostasis: Entangled networks. Cell. Mol. Life Sci., 78(10), 4563–4587. CrossRef Scholar google search
Cao X., Wang L., Selby C.P., Lindsey-Boltz L.A., Sancar A. (2023) Analysis of mammalian circadian clock protein complexes over a circadian cycle. J. Biol. Chem., 299(3), 102929. CrossRef Scholar google search
Tamai T.K., Nakane Y., Ota W., Kobayashi A., Ishiguro M., Kadofusa N., Ikegami K., Yagita K., Shigeyoshi Y., Sudo M., Nishiwaki-Ohkawa T., Sato A., Yoshimura T. (2018) Identification of circadian clock modulators from existing drugs. EMBO Mol. Med., 10(5), e8724. CrossRef Scholar google search
Devi V., Shankar P.K. (2008) Ramelteon: Amelatonin receptor agonist for the treatment of insomnia. J. Postgrad. Med., 54(1), 45–48. CrossRef Scholar google search
Gul S., Akyel Y.K., Gul Z.M., Isin S., Ozcan O., Korkmaz T., Selvi S., Danis I., Ipek O.S., Aygenli F., Taskin A.C., Akarlar B.A., Ozlu N., Ozturk N., Ozturk N., Ünal D.Ö., Guzel M., Turkay M., Okyar A., Kavakli I.H. (2022) Discovery of a small molecule that selectively destabilizes Cryptochrome 1 and enhances life span in p53 knockout mice. Nat. Commun., 13(1), 6742. CrossRef Scholar google search
Han A.H., Burroughs C.R., Falgoust E.P., Hasoon J., Hunt G., Kakazu J., Lee T., Kaye A.M., Kaye A.D., Ganti L. (2022) Suvorexant, a novel dual orexin receptor antagonist, for the management of insomnia. Health Psychol. Res., 10(5), 67898. CrossRef Scholar google search
Gotter A.L., Winrow C.J., Brunner J., Garson S.L., Fox S.V., Binns J., Harrell C.M., Cui D., Yee K.L., Stiteler M., Stevens J., Savitz A., Tannenbaum P.L., Tye S.J., McDonald T., Yao L., Kuduk S.D., Uslaner J., Coleman P.J., Renger J.J. (2013) The duration of sleep promoting efficacy by dual orexin receptor antagonists is dependent upon receptor occupancy threshold. BMC Neuroscience, 14(1), 90. CrossRef Scholar google search
Meng Q.J., Maywood E.S., Bechtold D.A., Lu W.Q., Li J., Gibbs J.E., Dupré S.M., Chesham J.E., Rajamohan F., Knafels J., Sneed B., Zawadzke L.E., Ohren J.F., Walton K.M., Wager T.T., Hastings M.H., Loudon A.S. (2010) Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc. Natl. Acad. Sci. USA, 107(34), 15240–15245. CrossRef Scholar google search
Park I., Kim D., Kim J., Jang S., Choi M., Choe H.K., Choe Y., Kim K. (2020) microRNA-25 as a novel modulator of circadian Period2 gene oscillation. Exp. Mol. Med., 52(9), 1614-1626. CrossRef Scholar google search
Mahoney H., Peterson E., Justin H., Gonzalez D., Cardona C., Stevanovic K., Faulkner J., Yunus A., Portugues A., Henriksen A., Burns C., McNeill C., Gamsby J., Gulick D. (2021) Inhibition of casein kinase 1 δ/ε improves cognitive performance in adult C57BL/6Jj mice. Sci. Rep., 11(1), 4746. CrossRef Scholar google search
Kim T.W., Jeong J.-H., Hong S.-C. (2015) The impact of sleep and circadian disturbance on hormones and metabolism. Int. J. Endocrinol., 2015, 591729. CrossRef Scholar google search
Ding M., Zhou H., Li Y.-M., Zheng Y.-W. (2024) Molecular pathways regulating circadian rhythm and associated diseases. Front Biosci. (Landmark Ed), 29(6), 206. CrossRef Scholar google search
Androulakis I.P. (2021) Circadian rhythms and the HPA axis: A systems view. WIREs Mech. Dis., 13(4), 1518. CrossRef Scholar google search
Kennaway D.J. (2005) The role of circadian rhythmicity in reproduction. Hum. Reprod. Update, 11(1), 91–101. CrossRef Scholar google search
Solovev I.A., Shaposhnikov M.V., Moskalev A.A. (2021) Chronobiotics KL001 and KS15 extend lifespan and modify circadian rhythms of Drosophila melanogaster. Clocks Sleep, 3(3), 429–441. CrossRef Scholar google search
Dufoo-Hurtado E., Wall-Medrano A., Campos-Vega R. (2022) Molecular Mechanisms Of Chronobiotics As Functional Foods. In: Molecular Mechanisms Of Functional Food (Campos-Vega R., Oomaheds B.D., eds.). John Wiley and Sons Ltd., pp. 57–86. CrossRef Scholar google search
Unruh B.A., Weidemann D.E., Kojima S. (2023) Coordination of rhythmic RNA synthesis and degradation orchestrates 24-hour and 12-hour RNA expression patterns in mouse fibroblasts. bioRxiv (Preprint), 2023, DOI: 10.1101/2023.07.26.550672. CrossRef Scholar google search
Liu Y., Hu W., Murakawa Y., Yin J., Wang G., Landthaler M., Yan J. (2013) Cold-induced RNA-binding proteins regulate circadian gene expression by controlling alternative polyadenylation. Sci. Rep., 3(1), 2054. CrossRef Scholar google search
Max C. (1977) Cytological investigation of embryos in low-dose X-irradiated young and old female inbred mice. Hereditas, 85(2), 199–206. CrossRef Scholar google search
Cardinali D.P., Furio A.M., Reyes M.P., Brusco L.I. (2006) The use of chronobiotics in the resynchronization of the sleep-wake cycle. Cancer Causes Control, 17(4), 601–609. CrossRef Scholar google search
Heesch C.B. (2014) The long-term use of sedative hypnotics in chronic insomnia. Mental Health Clinician, 4(2), 78–81. CrossRef Scholar google search
McMillan J.M., Aitken E., Holroyd-Leduc J.M. (2013) Management of insomnia and long-term use of sedativehypnotic drugs in older patients. Can. Med. Assoc. J., 185(17), 1499–1505. CrossRef Scholar google search
Wolff S.E.C., Wang X.-L., Jiao H., Sun J., Kalsbeek A., Yi C.-X., Gao Y. (2020) The effect of Rev-erbα agonist SR9011 on the immune response and cell metabolism of microglia. Front. Immunol., 11, 550145. CrossRef Scholar google search
Freeman S.L., Kwon H., Portolano N., Parkin G., Venkatraman Girija U., Basran J., Fielding A.J., Fairall L., Svistunenko D.A., Moody P.C.E., Schwabe J.W.R., Kyriacou C.P., Raven E.L. (2019) Heme binding to human CLOCK affects interactions with the E-box. Proc. Natl. Acad. Sci. USA, 116(40), 19911–19916. CrossRef Scholar google search
Menet J.S., Pescatore S., Rosbash M. (2014) CLOCK:BMAL1 is a pioneer-like transcription factor. Genes Dev., 28(1), 8–13. CrossRef Scholar google search
Trebucq L.L., Cardama G.A., Lorenzano Menna P., Golombek D.A., Chiesa J.J., Marpegan L. (2021) Timing of novel drug 1A-116 to circadian rhythms improves therapeutic effects against glioblastoma. Pharmaceutics, 13(7), 1091. CrossRef Scholar google search
Zhang J., Chang M., Wang X., Zhou X., Bai Q., Lang H., Zhang Q., Yi L., Mi M., Chen K. (2024) Pterostilbene targets the molecular oscillator RORγ to restore circadian rhythm oscillation and protect against sleep restriction induced metabolic disorders. Phytomedicine, 125(2024), 155327. CrossRef Scholar google search
Feigl B., Lewis S.J.G., Rawashdeh O. (2024) Targeting sleep and the circadian system as a novel treatment strategy for Parkinson's disease. J. Neurol., 271(3), 1483–1491. CrossRef Scholar google search
Doruk Y.U., Yarparvar D., Akyel Y.K., Gul S., Taskin A.C., Yilmaz F., Baris I., Ozturk N., Türkay M., Ozturk N., Okyar A., Kavakli I.H. (2020) A CLOCK-binding small molecule disrupts the interaction between CLOCK and BMAL1 and enhances circadian rhythm amplitude. J. Biol. Chem., 295(11), 3518–3531. CrossRef Scholar google search
Pett J.P., Korenčič A., Wesener F., Kramer A., Herzel H. (2016) Feedback loops of the mammalian circadian clock constitute repressilator. PLOS Comput. Biol., 12(12), 1005266. CrossRef Scholar google search
Lee Y., Shen Y., Francey L.J., Ramanathan C., Sehgal A., Liu A.C., Hogenesch J.B. (2019) The NRON complex controls circadian clock function through regulated PER and CRY nuclear translocation. Sci. Rep., 9(1), 11883. CrossRef Scholar google search
Banerjee S., Wang Y., Solt L.A., Griffett K., Kazantzis M., Amador A., El-Gendy B.M., Huitron-Resendiz S., Roberts A.J., Shin Y., Kamenecka T.M., Burris T.P. (2014) Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour. Nat. Commun., 5, 5759. CrossRef Scholar google search
Solt L.A., Wang Y., Banerjee S., Hughes T., Kojetin D.J., Lundasen T., Shin Y., Liu J., Cameron M.D., Noel R., Yoo S.-H., Takahashi J.S., Butler A.A., Kamenecka T.M., Burris T.P. (2012) Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature, 485(7396), 62–68. CrossRef Scholar google search
Woldt E., Sebti Y., Solt L.A., Duhem C., Lancel S., Eeckhoute J., Hesselink M.K., Paquet C., Delhaye S., Shin Y., Kamenecka T.M., Schaart G., Lefebvre P., Nevière R., Burris T.P., Schrauwen P., Staels B., Duez H. (2013) Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat. Med., 19(8), 1039–1046. CrossRef Scholar google search
Solovev I., Dobrovolskaya E., Shaposhnikov M., Sheptyakov M., Moskalev A. (2019) Neuron-specific overexpression of core clock genes improves stress-resistance and extends lifespan of Drosophila melanogaster. Exp. Gerontol., 117, 61–71. CrossRef Scholar google search
Kondratova A.A., Kondratov R.V. (2012) The circadian clock and pathology of the ageing brain. Nat. Rev. Neurosci., 13(5), 325–335. CrossRef Scholar google search
Schrader L.A., Ronnekleiv-Kelly S.M., Hogenesch J.B., Bradfield C.A., Malecki K.M.C. (2024) Circadian disruption, clock genes, and metabolic health. J. Clin. Invest., 134(14), 170998. CrossRef Scholar google search
Lin P., Zhang B., Yang H., Yang S., Xue P., Chen Y., Yu S., Zhang J., Zhang Y., Chen L., Fan C., Li F., Ling D. (2024) An artificial protein modulator reprogramming neuronal protein functions. Nat. Commun., 15(1), 2039. CrossRef Scholar google search
Lee J.W., Hirota T., Peters E.C., Garcia M., Gonzalez R., Cho C.Y., Wu X., Schultz P.G., Kay S.A. (2011) A small molecule modulates circadian rhythms through phosphorylation of the period protein. Angew. Chem. Int. Ed. Engl., 50(45), 10608–10611. CrossRef Scholar google search
Hirota T., Lee J.W., St John P.C., Sawa M., Iwaisako K., Noguchi T., Pongsawakul P.Y., Sonntag T., Welsh D.K., Brenner D.A., Doyle F.J. 3rd, Schultz P.G., Kay S.A. (2012) Identification of small molecule activators of cryptochrome. Science, 337(6098), 1094–1097. CrossRef Scholar google search
Giovannini L., Migliori M., Longoni B.M., Das D.K., Bertelli A.A., Panichi V., Filippi C., Bertelli A. (2001) Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. J. Cardiovasc. Pharmacol., 37(3), 262–270. CrossRef Scholar google search
Anabtawi N., Cvammen W., Kemp M.G. (2021) Pharmacological inhibition of cryptochrome and REV-ERB promotes DNA repair and cell cycle arrest in cisplatin-treated human cells. Sci. Rep., 11(1), 17997. CrossRef Scholar google search
Steele T.A., St Louis E.K., Videnovic A., Auger R.R. (2021) Circadian rhythm sleep-wake disorders: A contemporary review of neurobiology, treatment, and dysregulation in neurodegenerative disease. Neurotherapeutics, 18(1), 53–74. CrossRef Scholar google search
Kruusvee V., Toft A.M., Aguida B., Ahmad M., Wenkel S. (2022) Stop CRYing! Inhibition of cryptochrome function by small proteins. Biochem. Soc. Trans., 50(2), 773–782. CrossRef Scholar google search
Wang Y., Wang W., Jia Q., Tian H., Wang X., Li Y., Hussain S., Hussain H., Wang T., Wang S. (2023) BIC2, a cryptochrome function inhibitor, is involved in the regulation of ABA responses in Arabidopsis. Plants, 12(11), 2220. CrossRef Scholar google search
Ribeiro R.F.N., Cavadas C., Silva M.M.C. (2021) Small-molecule modulators of the circadian clock: Pharmacological potentials in circadian-related diseases. Drug Discov. Today, 26(7), 1620–1641. CrossRef Scholar google search
Lee J., Lee S., Chung S., Park N., Son G.H., An H., Jang J., Chang D.-J., Suh Y.-G., Kim K. (2016) Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism. Biochem. Biophys. Res. Commun., 469(3), 580–586. CrossRef Scholar google search
Qian Y., Zhang J., Yan B., Chen X. (2008) DEC1, a basic helix-loop-helix transcription factor and a novel target gene of the p53 family, mediates p53-dependent premature senescence. J. Biol. Chem., 283(5), 2896–2905. CrossRef Scholar google search
Burke C.A., Nitti V.W., Stothers L. (2024) Melatonin and melatonin receptor agonists in the treatment of nocturia: A systematic review. Neurourology Urodynamics, 43(4), 826–839. CrossRef Scholar google search
Liu J., Clough S.J., Hutchinson A.J., Adamah-Biassi E.B., Popovska-Gorevski M., Dubocovich M.L. (2016) MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu. Rev. Pharmacol. Toxicol., 56, 361–383. CrossRef Scholar google search
Maguire J.L., Mennerick S. (2024) Neurosteroids: Mechanistic considerations and clinical prospects. Neuropsychopharmacology, 49(1), 73–82. CrossRef Scholar google search
Izumi Y., Ishikawa M., Nakazawa T., Kunikata H., Sato K., Covey D.F., Zorumski C.F. (2023) Neurosteroids as stress modulators and neurotherapeutics: Lessons from the retina. Neural Regen. Res., 18(5), 1004–1008. CrossRef Scholar google search
Reischl S., Vanselow K., Westermark P.O., Thierfelder N., Maier B., Herzel H., Kramer A. (2007) β-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms, 22(5), 375–386. CrossRef Scholar google search
d'Alessandro M., Beesley S., Kim J.K., Jones Z., Chen R., Wi J., Kyle K., Vera D., Pagano M., Nowakowski R., Lee C. (2017) Stability of wake-sleep cycles requires robust degradation of the period protein. Curr. Biol., 27(22), 3454–3467.e8. CrossRef Scholar google search
Yoo S.-H., Mohawk J.A., Siepka S.M., Shan Y., Huh S.K., Hong H.-K., Kornblum I., Kumar V., Koike N., Xu M., Nussbaum J., Liu X., Chen Z., Chen Z.J., Green C.B., Takahashi J.S. (2013) Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell, 152(5), 1091–1105. CrossRef Scholar google search
le Sauter J., Lambert C.M., Robotham M.R., Model Z., Silver R., Weaver D.R. (2012) Antibodies for assessing circadian clock proteins in the rodent suprachiasmatic nucleus. PLOS ONE, 7(4), 35938. CrossRef Scholar google search
Uriu K., Hernandez-Sanchez J.P., Kojima S. (2024) Impacts of the feedback loop between sense-antisense RNAs in regulating circadian rhythms. bioRxiv (Preprint), 2024, DOI: 10.1101/2024.04.28.591560. CrossRef Scholar google search
Ko J.-Y., Wang F.-S., Lian W.-S., Fang H.-C., Kuo S.-J. (2024) Cartilage-specific knockout of miRNA-128a expression normalizes the expression of circadian clock genes (CCGs) and mitigates the severity of osteoarthritis. Biomedical J., 47(2), 100629. CrossRef Scholar google search
Micheletti S., Palestra F., Martelli P., Accorsi P., Galli J., Giordano L., Trebeschi V., Fazzi E. (2016) Neurodevelopmental profile in Angelman syndrome: More than low intelligence quotient. Ital. J. Pediatr., 42(1), 91. CrossRef Scholar google search
Lee D., Chen W., Kaku H.N., Zhuo X., Chao E.S., Soriano A., Kuncheria A., Flores S., Kim J.H., Rivera A., Rigo F., Jafar-Nejad P., Beaudet A.L., Caudill M.S., Xue M. (2023) Antisense oligonucleotide therapy rescues disturbed brain rhythms and sleep in juvenile and adult mouse models of Angelman syndrome. eLife, 12, 81892. CrossRef Scholar google search
Ma Q., Mo G., Tan Y. (2020) Micro RNAs and the biological clock: A target for diseases associated with a loss of circadian regulation. Afr. Health. Sci., 20(4), 1887–1894. CrossRef Scholar google search
Xue Z., Ye Q., Anson S.R., Yang J., Xiao G., Kowbel D., Glass N.L., Crosthwaite S.K., Liu Y. (2014) Transcriptional interference by antisense RNA is required for circadian clock function. Nature, 514(7524), 650–653. CrossRef Scholar google search
Duez H., Staels B. (2009) Rev-erb-α: An integrator of circadian rhythms and metabolism. J. Appl. Physiol., 107(6), 1972–1980. CrossRef Scholar google search
Zhang Y., Li Y., Barber A.F., Noya S.B., Williams J.A., Li F., Daniel S.G., Bittinger K., Fang J., Sehgal A. (2023) The microbiome stabilizes circadian rhythms in the gut. Proc. Natl. Acad. Sci. USA, 120(5), 2217532120. CrossRef Scholar google search
West N.P., Hughes L., Ramsey R., Zhang P., Martoni C.J., Leyer G.J., Cripps A.W., Cox A.J. (2020) Probiotics, anticipation stress, and the acute immune response to night shift. Front. Immunol., 11, 599547. CrossRef Scholar google search
Bishehsari F., Voigt R.M., Keshavarzian A. (2020) Circadian rhythms and the gut microbiota: From the metabolic syndrome to cancer. Nat. Rev. Endocrinol., 16(12), 731–739. CrossRef Scholar google search
Ganeshan K., Chawla A. (2014) Metabolic regulation of immune responses. Annu. Rev. Immunol., 32, 609–634. CrossRef Scholar google search
Haspel J.A., Anafi R., Brown M.K., Cermakian N., Depner C., Desplats P., Gelman A.E., Haack M., Jelic S., Kim B.S., Laposky A.D., Lee Y.C., Mongodin E., Prather A.A., Prendergast B.J., Reardon C., Shaw A.C., Sengupta S., Szentirmai É., Thakkar M., Walker W.E., Solt L.A. (2020) Perfect timing: Circadian rhythms, sleep, and immunity — an NIH workshop summary. JCI Insight, 5(1), e131487. CrossRef Scholar google search
Thompson R.S., Gaffney M., Hopkins S., Kelley T., Gonzalez A., Bowers S.J., Vitaterna M.H., Turek F.W., Foxx C.L., Lowry C.A., Vargas F., Dorrestein P.C., Wright K.P. Jr, Knight R., Fleshner M. (2021) Ruminiclostridium 5, Parabacteroides distasonis, and bile acid profile are modulated by prebiotic diet and associate with facilitated sleep/clock realignment after chronic disruption of rhythms. Brain. Behav. Immun., 97, 150–166. CrossRef Scholar google search
Beyaz Coşkun A., Turkoglu S., Sağdıçoğlu Celep A.G., Özercan İ.H., Korkmaz E. (2024) Effect of probiotic, prebiotic, and synbiotic supplementation on circadian clock in rats with fructose-induced non-alcoholic fatty liver. Egyptian Liver J., 14(1), 65. CrossRef Scholar google search
Boivin D.B., Boudreau P., Kosmadopoulos A. (2022) Disturbance of the circadian system in shift work and its health impact. J. Biol. Rhythms, 37(1), 3–28. CrossRef Scholar google search
Dagan Y., Borodkin K. (2005) Behavioral and psychiatric consequences of sleep-wake schedule disorders. Dialogues Clin. Neurosci., 7(4), 357–365. CrossRef Scholar google search
Hood S., Amir S. (2017) The aging clock: Circadian rhythms and later life. J. Clin. Invest., 127(2), 437–446. CrossRef Scholar google search
Fatemeh G., Sajjad M., Niloufar R., Neda S., Leila S., Khadijeh M. (2022) Effect of melatonin supplementation on sleep quality: A systematic review and meta-analysis of randomized controlled trials. J. Neurol., 269(1), 205–216. CrossRef Scholar google search
Singer C., Tractenberg R.E., Kaye J., Schafer K., Gamst A., Grundman M., Thomas R., Thal L.J. (2003) A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer's disease. Sleep, 26(7), 893–901. CrossRef Scholar google search
Duffy J.F., Wang W., Ronda J.M., Czeisler C.A. (2022) High dose melatonin increases sleep duration during nighttime and daytime sleep episodes in older adults. J. Pineal Res., 73(1), 12801. CrossRef Scholar google search
Yang Q., Vijayakumar A., Kahn B.B. (2018) Metabolites as regulators of insulin sensitivity and metabolism. Nat. Rev. Mol. Cell. Biol., 19(10), 654–672. CrossRef Scholar google search
Delezie J., Dumont S., Dardente H., Oudart H., Gréchez-Cassiau A., Klosen P., Teboul M., Delaunay F., Pévet P., Challet E. (2012) The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB J., 26(8), 3321–3335. CrossRef Scholar google search
Vieira E., Marroquí L., Figueroa A.L., Merino B., Fernandez-Ruiz R., Nadal A., Burris T.P., Gomis R., Quesada I. (2013) Involvement of the clock gene Rev-erb alpha in the regulation of glucagon secretion in pancreatic alpha-cells. PLOS ONE, 8(7), 69939. CrossRef Scholar google search
Wang S., Li F., Lin Y., Wu B. (2020) Targeting REV-ERBα for therapeutic purposes: Promises and challenges. Theranostics, 10(9), 4168. CrossRef Scholar google search
Bushana P.N., Schmidt M.A., Rempe M.J., Sorg B.A., Wisor J.P. (2023) Chronic dietary supplementation with nicotinamide riboside reduces sleep need in the laboratory mouse. Sleep Adv., 4(1), 044. CrossRef Scholar google search
Carrillo-Vico A., Lardone P.J., Alvarez-Sánchez N., Rodríguez-Rodríguez A., Guerrero J.M. (2013) Melatonin: Buffering the immune system. Int. J. Mol. Sci., 14(4), 8638–8683. CrossRef Scholar google search
Kireev R.A., Tresguerres A.C., Garcia C., Ariznavarreta C., Vara E., Tresguerres J.A. (2008) Melatonin is able to prevent the liver of old castrated female rats from oxidative and pro-inflammatory damage. J. Pineal Res., 45(4), 394–402. CrossRef Scholar google search