Homology modeling of the orthoflavivirus NS1 protein for virtual screening of potential ligands
Fomina A.D.1, Palyulin V.A.2, Osolodkin D.I.3
1. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia 2. Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia 3. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia; Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
The orthoflavivirus NS1 protein is a relatively understudied target for the design of broad-spectrum anti-orthoflaviviral drugs. Currently, the NS1 protein structures of tick-borne orthoflaviviruses have not been published yet, but these structures can be modelled by homology, thus generating a large amount of structural data. We performed homology modelling of the NS1 protein structures of epidemiologically significant orthoflaviviruses and analysed the possibility of using these models in ensemble docking-based virtual screening. The limitations of the method and the importance of separating the models based on the vector organism when selecting an ensemble have been demonstrated.
Fomina A.D., Palyulin V.A., Osolodkin D.I. (2024) Homology modeling of the orthoflavivirus NS1 protein for virtual screening of potential ligands. Biomeditsinskaya Khimiya, 70(6), 456-468.
Fomina A.D. et al. Homology modeling of the orthoflavivirus NS1 protein for virtual screening of potential ligands // Biomeditsinskaya Khimiya. - 2024. - V. 70. -N 6. - P. 456-468.
Fomina A.D. et al., "Homology modeling of the orthoflavivirus NS1 protein for virtual screening of potential ligands." Biomeditsinskaya Khimiya 70.6 (2024): 456-468.
Fomina, A. D., Palyulin, V. A., Osolodkin, D. I. (2024). Homology modeling of the orthoflavivirus NS1 protein for virtual screening of potential ligands. Biomeditsinskaya Khimiya, 70(6), 456-468.
References
Pierson T.C., Diamond M.S. (2020) The continued threat of emerging flaviviruses. Nat. Microbiol., 5(6), 796–812. CrossRef Scholar google search
Pustijanac E., Buršić M., Talapko J., Škrlec I., Meštrović T., Lišnjić D. (2023) Tick-borne encephalitis virus: A comprehensive review of transmission, pathogenesis, epidemiology, clinical manifestations, diagnosis, and prevention. Microorganisms, 11(7), 1634. CrossRef Scholar google search
Kolyasnikova N.M., Ishmukhametov A.A., Akimkin V.G. (2023) The current state of the problem of tick-borne encephalitis in Russia and the world. Epidemiology and Vaccinal Prevention., 22(1), 104–123. CrossRef Scholar google search
Putintseva E.V., Udovichenko S.K., Nikitin D.N., Boroday N.V., Baturin A.A., Machneva A.Yu., Antonov A.S., Zarubin N.A., Toporkov A.V. (2023) West Nile fever in the Russian Federation in 2022, the incidence forecast for 2023. Problems of Particularly Dangerous Infections, 1, 75–84. CrossRef Scholar google search
Ruzek D., Avšič Županc T., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Knap N., Kozlovskaya L., Matveev A., Miller A.D., Osolodkin D.I., Överby A.K., Tikunova N., Tkachev S., Zajkowska J. (2019) Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res., 164, 23–51. CrossRef Scholar google search
Redoni M., Yacoub S., Rivino L., Giacobbe D.R., Luzzati R., di Bella S. (2020) Dengue: Status of current and under-development vaccines. Rev. Med. Virol., 30(4), e2101. CrossRef Scholar google search
Yun S.-I., Lee Y.-M. (2014) Japanese encephalitis: The virus and vaccines. Hum. Vaccin. Immunother., 10(2), 263–279. CrossRef Scholar google search
Morrone S.R., Lok S.-M. (2019) Structural perspectives of antibody-dependent enhancement of infection of dengue virus. Curr. Opin. Virol., 36, 1–8. CrossRef Scholar google search
Bardina S.V., Bunduc P., Tripathi S., Duehr J., Frere J.J., Brown J.A., Nachbagauer R., Foster G.A., Krysztof D., Tortorella D., Stramer S.L., García-Sastre A., Krammer F., Lim J.K. (2017) Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science, 356(6334), 175–180. CrossRef Scholar google search
Santos-Peral A., Luppa F., Goresch S., Nikolova E., Zaucha M., Lehmann L., Dahlstroem F., Karimzadeh H., Thorn-Seshold J., Winheim E., Schuster E.-M., Dobler G., Hoelscher M., Kümmerer B.M., Endres S., Schober K., Krug A.B., Pritsch M., Barba-Spaeth G., Rothenfusser S. (2024) Prior flavivirus immunity skews the yellow fever vaccine response to cross-reactive antibodies with potential to enhance dengue virus infection. Nat. Commun., 15(1), 1696. CrossRef Scholar google search
Chong H.Y., Leow C.Y., Abdul Majeed A.B., Leow C.H. (2019) Flavivirus infection — A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res., 274, 197770. CrossRef Scholar google search
Rastogi M., Singh S.K. (2020) Zika virus NS1 affects the junctional integrity of human brain microvascular endothelial cells. Biochimie, 176, 52–61. CrossRef Scholar google search
Puerta-Guardo H., Glasner D.R., Espinosa D.A., Biering S.B., Patana M., Ratnasiri K., Wang C., Beatty P.R., Harris E. (2019) Flavivirus NS1 triggers tissue-specific vascular endothelial dysfunction reflecting disease tropism. Cell Rep., 26(6), 1598–1613.e8. CrossRef Scholar google search
Puerta-Guardo H., Glasner D.R., Harris E. (2016) Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability. PLOS Pathogens, 12(7), e1005738. CrossRef Scholar google search
Avirutnan P., Fuchs A., Hauhart R.E., Somnuke P., Youn S., Diamond M.S., Atkinson J.P. (2010) Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J. Exp. Med., 207(4), 793–806. CrossRef Scholar google search
Chen S., Wu Z., Wang M., Cheng A. (2017) Innate immune evasion mediated by flaviviridae non-structural proteins. Viruses, 9(10), 291. CrossRef Scholar google search
Bílý T., Palus M., Eyer L., Elsterová J., Vancová M., Růžek D. (2015) Electron tomography analysis of tick-borne encephalitis virus infection in human neurons. Sci. Rep., 5(1), 10745. CrossRef Scholar google search
Płaszczyca A., Scaturro P., Neufeldt C.J., Cortese M., Cerikan B., Ferla S., Brancale A., Pichlmair A., Bartenschlager R. (2019) A novel interaction between dengue virus nonstructural protein 1 and the NS4A-2K-4B precursor is required for viral RNA replication but not for formation of the membranous replication organelle. PLOS Pathogens., 15(5), e1007736. CrossRef Scholar google search
de Silva A.M., Rey F.A., Young P.R., Hilgenfeld R., Vasudevan S.G. (2018) Viral entry and NS1 as potential antiviral drug targets. Adv. Exp. Med. Biol., 1062, 107–113. CrossRef Scholar google search
Raza S., Abbas G., Azam S.S. (2020) Screening pipeline for flavivirus based inhibitors for Zika virus NS1. IEEE/ACM Trans. Comput. Biol. Bioinform., 17(5), 1751–1761. CrossRef Scholar google search
Modhiran N., Gandhi N.S., Wimmer N., Cheung S., Stacey K., Young P.R., Ferro V., Watterson D. (2019) Dual targeting of dengue virus virions and NS1 protein with the heparan sulfate mimic PG545. Antiviral Res., 168, 121–127. CrossRef Scholar google search
Shu B., Ooi J.S.G., Tan A.W.K., Ng T.-S., Dejnirattisai W., Mongkolsapaya J., Fibriansah G., Shi J., Kostyuchenko V.A., Screaton G.R., Lok S.-M. (2022) CryoEM structures of the multimeric secreted NS1, a major factor for dengue hemorrhagic fever. Nat. Commun., 13(1), 6756. CrossRef Scholar google search
Pan Q., Jiao H., Zhang W., Chen Q., Zhang G., Yu J., Zhao W., Hu H. (2024) The step-by-step assembly mechanism of secreted flavivirus NS1 tetramer and hexamer captured at atomic resolution. Sci. Adv., 10(18), eadm8275. CrossRef Scholar google search
Gutsche I., Coulibaly F., Voss J.E., Salmon J., d’Alayer J., Ermonval M., Larquet E., Charneau P., Krey T., Mégret F., Guittet E., Rey F.A., Flamand M. (2011) Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. Proc. Natl. Acad. Sci. USA, 108(19), 8003–8008. CrossRef Scholar google search
Roy P., Roy S., Sengupta N. (2020) Disulfide reduction allosterically destabilizes the β-ladder subdomain assembly within the NS1 dimer of ZIKV. Biophys. J., 119(8), 1525–1537. CrossRef Scholar google search
Akey D.L., Brown W.C., Dutta S., Konwerski J., Jose J., Jurkiw T.J., del Proposto J., Ogata C.M., Skiniotis G., Kuhn R.J., Smith J.L. (2014) Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science, 343(6173), 881–885. CrossRef Scholar google search
Zhang S., Wang X., He Y., Hu T., Guo J., Wang M., Jia R., Zhu D., Liu M., Zhao X., Yang Q., Wu Y., Zhang S., Huang J., Mao S., Ou X., Gao Q., Sun D., Liu Y., Zhang L., Chen S., Cheng A. (2021) N130, N175 and N207 are N-linked glycosylation sites of duck tembusu virus NS1 that are important for viral multiplication, viremia and virulence in ducklings. Vet. Microbiol., 261, 109215. CrossRef Scholar google search
Somnuke P., Hauhart R.E., Atkinson J.P., Diamond M.S., Avirutnan P. (2011) N-Linked glycosylation of dengue virus NS1 protein modulates secretion, cell-surface expression, hexamer stability, and interactions with human complement. Virology, 413(2), 253–264. CrossRef Scholar google search
Pryor M.J., Wright P.J. (1994) Glycosylation mutants of dengue virus NS1 protein. J. Gen. Virol., 75(Pt 5), 1183–1187. CrossRef Scholar google search
Akey D.L., Brown W.C., Konwerski J.R., Ogata C.M., Smith J.L. (2014) Use of massively multiple merged data for low-resolution S-SAD phasing and refinement of flavivirus NS1. Acta Cryst. D., 70(10), 2719–2729. CrossRef Scholar google search
Brown W.C., Akey D.L., Konwerski J.R., Tarrasch J.T., Skiniotis G., Kuhn R.J., Smith J.L. (2016) Extended surface for membrane association in Zika virus NS1 structure. Nat. Struct. Mol. Biol., 23(9), 865–867. CrossRef Scholar google search
Xu X., Song H., Qi J., Liu Y., Wang H., Su C., Shi Y., Gao G.F. (2016) Contribution of intertwined loop to membrane association revealed by Zika virus full-length NS1 structure. EMBO J., 35(20), 2170–2178. CrossRef Scholar google search
Carlson H.A., Masukawa K.M., McCammon J.A. (1999) Method for including the dynamic fluctuations of a protein in computer-aided drug design. J. Phys. Chem. A, 103(49), 10213–10219. CrossRef Scholar google search
Fomina A.D., Uvarova V.I., Kozlovskaya L.I., Palyulin V.A., Osolodkin D.I., Ishmukhametov A.A. (2024) Ensemble docking based virtual screening of SARS-CoV-2 main protease inhibitors. Mol. Inf., 43(8), e202300279. CrossRef Scholar google search
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. (2000) The Protein Data Bank. Nucleic Acids Res., 28(1), 235–242. CrossRef Scholar google search
Boratyn G.M., Thierry-Mieg J., Thierry-Mieg D., Busby B., Madden T.L. (2019) Magic-BLAST, an accurate RNA-Seq aligner for long and short reads. BMC Bioinformatics, 20(1), 405. CrossRef Scholar google search
Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. (1993) PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr., 26(2), 283–291. CrossRef Scholar google search
Humphrey W., Dalke A., Schulten K. (1996) VMD: Visual molecular dynamics. J. Mol. Graph., 14(1), 33–38. CrossRef Scholar google search
McKinney W. (2010) Data structures for statistical computing in Python. Proceedings of the 9th Python in Science Conference, 56–61. CrossRef Scholar google search
Harris C.R., Millman K.J., van der Walt S.J., Gommers R., Virtanen P., Cournapeau D., Wieser E., Taylor J., Berg S., Smith N.J., Kern R., Picus M., Hoyer S., van Kerkwijk M.H., Brett M., Haldane A., del Río J.F., Wiebe M., Peterson P., Gérard-Marchant P., Sheppard K., Reddy, T., Weckesser W., Abbasi H., Gohlke C., Oliphant T.E. (2020) Array programming with NumPy. Nature, 585(7825), 357–362. CrossRef Scholar google search
Waskom M.L. (2021) Seaborn: Statistical data visualization. J.Open Source Softw., 6(60), 3021. CrossRef Scholar google search
Ngan C.-H., Hall D.R., Zerbe B., Grove L.E., Kozakov D., Vajda S. (2012) FTSite: High accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics, 28(2), 286–287. CrossRef Scholar google search
Kozakov D., Grove L.E., Hall D.R., Bohnuud T., Mottarella S.E., Luo L., Xia B., Beglov D., Vajda S. (2015) The FTMap family of web servers for determining and characterizing ligandbinding hot spots of proteins. Nat. Protoc., 10(5), 733–755. CrossRef Scholar google search
Volkamer A., Griewel A., Grombacher T., Rarey M. (2010) Analyzing the topology of active sites: On the prediction of pockets and subpockets. J. Chem. Inf. Model., 50(11), 2041–2052. CrossRef Scholar google search
Zentrum für Bioinformatik: Universität Hamburg — Proteins Plus Server. Retrieved January 15, 2020 from https://proteins.plus/. Scholar google search
Edgar R.C. (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 32(5), 1792–1797. CrossRef Scholar google search
Retrieved August 08, 2023 from https://www.ebi.ac.uk/Tools/msa/muscle/. Scholar google search
Webb B., Sali A. (2016) Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics, 54, 5.6.1–5.6.37. CrossRef Scholar google search
Wildman S.A., Crippen G.M. (1999) Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Comput. Sci., 39(5), 868–873. CrossRef Scholar google search
Cresset/flare-python-pyflare GitLab. GitLab. Retrieved August 20, 2023 from https://gitlab.com/cresset/flare-python-pyflare. Scholar google search
Ligand and structure-based drug design software | Flare. Retrieved October 01, 2024 from https://www.cresset-group.com/software/flare/. Scholar google search
Bauer M.R., Mackey M.D. (2019) Electrostatic complementarity as a fast and effective tool to optimize binding and selectivity of protein-ligand complexes. J. Med. Chem., 62(6), 3036–3050. CrossRef Scholar google search
Stroganov O.V., Novikov F.N., Stroylov V.S., Kulkov V., Chilov G.G. (2008) Lead Finder: An approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. J. Chem. Inf. Model., 48(12), 2371–2385. CrossRef Scholar google search
Kufareva I., Abagyan R. (2012) Methods of protein structure comparison. Methods Mol. Biol., 857, 231–257. CrossRef Scholar google search
Retrieved October 01, 2024 from https://ictv.global/report/ chapter/flaviviridae/flaviviridae/orthoflavivirus. Scholar google search
Walker P.J., Siddell S.G., Lefkowitz E.J., Mushegian A.R., Adriaenssens E.M., Alfenas-Zerbini P., Dempsey D.M., Dutilh B.E., García M.L., Curtis Hendrickson R., Junglen S., Krupovic M., Kuhn J.H., Lambert A.J., Łobocka M., Oksanen H.M., Orton R.J., Robertson D.L., Rubino L., Sabanadzovic S., Simmonds P., Smith D.B., Suzuki N., van Doorslaer K., Vandamme A.-M., Varsani A., Zerbini F.M. (2022) Recent changes to virus taxonomy ratified by the international committee on taxonomy of viruses. Arch. Virol., 167(11), 2429–2440. CrossRef Scholar google search
Fiser A., Sali A. (2003) Modeller: Generation and refinement of homology-based protein structure models. Methods Enzymol., 374, 461–491. CrossRef Scholar google search
Shen M., Sali A. (2006) Statistical potential for assessment and prediction of protein structures. Prot. Sci., 15(11), 2507–2624. CrossRef Scholar google search