1. Volgograd State Medical University, Volgograd, Russia 2. Volgograd State Medical University, Volgograd, Russia; Volgograd Medical Research Center, Volgograd, Russia 3. Botkin Hospital, Moscow, Russia
The PPM1D gene and its protein product (serine-threonine protein phosphatase, PPM1D or Wip1) are involved in regulation of cell's DNA damage response, cell cycle control, and repair. Amplification, overexpression, or mutations of the PPM1D gene have a significant impact on cell responses to stress factors and genetic instability as well as impairments of processes of double-strand break repair, nucleotide excision repair, base excision repair, cell cycle, and apoptosis. PPM1D dephosphorylates and thus inactivates p53, proteins that respond to DNA strand integrity damage, cell cycle checkpoint proteins, and apoptotic proteins. This contributes to tumor development, growth, and maintenance of the tumor phenotype. In this review we consider data on the role of the PPM1D gene in the formation and maintenance of various oncological processes, including tumors of the mammary glands, ovaries, prostate gland, esophagus, stomach, intestines, liver and pancreas, hemoblastoses, and others.
Download PDF:
Keywords: PPM1D gene, Mg2+/Mn2+-dependent protein phosphatase 1D, tumor diseases
Citation:
Kucheryavenko A.S., Muzyko E.A., Perfilova V.N., Kaplanov K.D., Frolov M.Yu. (2025) The role of the PPM1D gene in tumor pathogenesis. Biomeditsinskaya Khimiya, 71(1), 19-28.
Kucheryavenko A.S. et al. The role of the PPM1D gene in tumor pathogenesis // Biomeditsinskaya Khimiya. - 2025. - V. 71. -N 1. - P. 19-28.
Kucheryavenko A.S. et al., "The role of the PPM1D gene in tumor pathogenesis." Biomeditsinskaya Khimiya 71.1 (2025): 19-28.
Kucheryavenko, A. S., Muzyko, E. A., Perfilova, V. N., Kaplanov, K. D., Frolov, M. Yu. (2025). The role of the PPM1D gene in tumor pathogenesis. Biomeditsinskaya Khimiya, 71(1), 19-28.
References
Deng W., Li J., Dorrah K., Jimenez-Tapia D., Arriaga B., Hao Q., Cao W., Gao Z., Vadgama J., Wu Y. (2020) The role of PPM1D in cancer and advances in studies of its inhibitors. Biomed. Pharmacother., 125, 109956. CrossRef Scholar google search
Nahta R., Castellino R.C. (2021) Phosphatase magnesiumdependent 1δ (PPM1D), serine/threonine protein phosphatase and novel pharmacological target in cancer. Biochem. Pharmacol., 184, 114362. CrossRef Scholar google search
Milosevic J., Fransson S., Gulyas M., Olsen T.K., Gallo-Oller G., Treis D., Elfman L.H.M., Wilhelm M., Martinsson T., Baryawno N., Kogner P., Johnsen J.I. (2021) High expression of PPM1D induces tumors phenotypically similar to TP53 loss-of-function mutations in mice. Cancers, 21(13), 5493. CrossRef Scholar google search
Hsu J.I., Dayaram T., Tovy A., de Braekeleer E., Jeong M., Wang F., Zhang J., Heffernan T.P., Gera S., Kovacs J.J., Marszalek J.R., Bristow C., Yan Y., Garcia-Manero G., Kantarjian H., Vassiliou G., Futreal P.A., Donehower L.A., Takahashi K., Goodell M.A. (2018) PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell, 23(5), 700–713.e6. CrossRef Scholar google search
Fiscella M., Zhang H., Fan S., Sakaguchi K., Shen S., Mercer W.E., Vande Woude G.F., O'Connor P.M., Appella E. (1997) Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc. Natl. Acad. Sci. USA, 94(12), 6048–6053. CrossRef Scholar google search
Swisher E.M., Harrell M.I., Norquist B.M., Walsh T., Brady M., Lee M., Hershberg R., Kalli K.R., Lankes H., Konnick E.Q., Pritchard C.C., Monk B.J., Chan J.K., Burger R., Kaufmann S.H., Birrer M.J. (2016) Somatic mosaic mutations in PPM1D and TP53 in the blood of women with ovarian carcinoma. JAMA Oncology, 3(2), 370–372. CrossRef Scholar google search
Bai F., Zhou H., Fu Z., Xie J., Hu Y., Nie S. (2018) NF-κB-induced WIP1 expression promotes colorectal cancer cell proliferation through mTOR signaling. Biomed. Pharmacother., 99, 402–410. CrossRef Scholar google search
Inoue Y., Yamashita N., Kitao H., Tanaka K., Saeki H., Oki E., Oda Y., Tokunaga E., Maehara Y. (2018) Clinical significance of the wild type p53-induced phosphatase 1 expression in invasive breast cancer. Clin. Breast Cancer, 18(4), e643–e650. CrossRef Scholar google search
Silver A.J., Jaiswal S. (2019) Clonal hematopoiesis: Pre-cancer PLUS. Adv. Cancer Res., 141, 85–128. CrossRef Scholar google search
Li K., Liu Y., Xu S., Wang J. (2020) PPM1D functions as oncogene and is associated with poor prognosis in esophageal squamous cell carcinoma. Pathol. Oncol. Res., 26(1), 387–395. CrossRef Scholar google search
Lu Z.W., Wen D., Wei W.J., Han L.T., Xiang J., Wang Y.L., Wang Y., Liao T., Ji Q.H. (2020) Silencing of PPM1D inhibits cell proliferation and invasion through the p38 MAPK and p53 signaling pathway in papillary thyroid carcinoma. Oncol. Rep., 43(3), 783–794. CrossRef Scholar google search
Yu Z., Song Y., Cai M., Jiang B., Zhang Z., Wang L., Jiang Y., Zou L., Liu X., Yu N., Mao X., Peng C., Liu S. (2021) PPM1D is a potential prognostic biomarker and correlates with immune cell infiltration in hepatocellular carcinoma. Aging (Albany NY), 17(13), 21294–21308. CrossRef Scholar google search
Tang T., Tan X., Wang Z., Wang S., Wang Y., Xu J., Wei X., Zhang D., Liu Q., Jiang J. (2021) Germline mutations in patients with early-onset prostate cancer. Front. Oncol., 12, 826778. CrossRef Scholar google search
Zhang L., Hsu J.I., Goodell M.A. (2022) PPM1D in solid and hematologic malignancies: friend and foe? Mol. Cancer Res., 20(9), 1365–1378. CrossRef Scholar google search
Gräf J.F., Mikicic I., Ping X., Scalera C., Mayr K., Stelzl L.S., Beli P., Wagner S.A. (2022) Substrate spectrum of PPM1D in the cellular response to DNA double-strand breaks. iScience, 25(9), 104892. CrossRef Scholar google search
Nguyen T.A., Slattery S.D., Moon S.H., Darlington Y.F., Lu X., Donehower L.A. (2010) The oncogenic phosphatase WIP1 negatively regulates nucleotide excision repair. DNA Repair, 9(7), 813–823. CrossRef Scholar google search
Lu X., Bocangel D., Nannenga B., Yamaguchi H., Appella E., Donehower L.A. (2004) The p53-induced oncogenic phosphatase PPM1D interacts with uracil DNA glycosylase and suppresses base excision repair. Mol. Cell, 15(4), 621–634. CrossRef Scholar google search
Loughery J., Cox M., Smith L.M., Meek D.W. (2014) Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic Acids Res., 42(12), 7666–7680. CrossRef Scholar google search
Lu X., Nannenga B., Donehower L.A. (2005) PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev., 19(10), 1162–1174. CrossRef Scholar google search
Yoda A., Toyoshima K., Watanabe Y., Onishi N., Hazaka Y., Tsukuda Y., Tsukada J., Kondo T., Tanaka Y., Minami Y. (2008) Arsenic trioxide augments Chk2/p53-mediated apoptosis by inhibiting oncogenic Wip1 phosphatase. J. Biol. Chem., 283(27), 18969–18979. CrossRef Scholar google search
Li B., Hu J., He D., Chen Q., Liu S., Zhu X., Yu M. (2020) PPM1D knockdown suppresses cell proliferation, promotes cell apoptosis, and activates p38 MAPK/p53 signaling pathway in acute myeloid leukemia. Technol. Cancer Res. Treat., 19, 1533033820942312. CrossRef Scholar google search
Lu X., Ma O., Nguyen T.A., Jones S.N., Oren M., Donehower L.A. (2007) The Wip1 phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell, 12(4), 342–354. CrossRef Scholar google search
Lee J., Kim J., Kim E.M., Kim U., Kang A.R., Park J.K., Um H.D. (2021) p21WAF1/CIP1 promotes p53 protein degradation by facilitating p53-Wip1 and p53-Mdm2 interaction. Biochem. Biophys. Res. Commun., 543, 23–28. CrossRef Scholar google search
Ali A.Y., Farrand L., Kim J.Y., Byun S., Suh J.Y., Lee H.J., Tsang B.K. (2012) Molecular determinants of ovarian cancer chemoresistance: new insights into an old conundrum. Ann. NY Acad. Sci., 1271(1), 58–67. CrossRef Scholar google search
Lambros M.B., Natrajan R., Geyer F.C., Lopez-Garcia M.A., Dedes K.J., Savage K., Lacroix-Triki M., Jones R.L., Lord C.J., Linardopoulos S., Ashworth A., Reis-Filho J.S. (2010) PPM1D gene amplification and overexpression in breast cancer: a qRT-PCR and chromogenic in situ hybridization study. Modern Pathology, 23(10), 1334–1345. CrossRef Scholar google search
He L., Lv S., Ma X., Jiang S., Zhou F., Zhang Y., Yu R., Zhao Y. (2022) ErbB2 promotes breast cancer metastatic potential via HSF1/LDHA axis-mediated glycolysis. Med. Oncol., 39(4), 45. CrossRef Scholar google search
Wang J., Wang G., Cheng D., Huang S., Chang A., Tan X., Wang Q., Zhao S., Wu D., Liu A.T., Yang S., Xiang R., Sun P. (2020) Her2 promotes early dissemination of breast cancer by suppressing the p38-MK2-Hsp27 pathway that is targetable by Wip1 inhibition. Oncogene, 39(40), 6313–6326. CrossRef Scholar google search
Bulavin D.V., Phillips C., Nannenga B., Timofeev O., Donehower L.A., Anderson C.W., Appella E., Fornace A.J. Jr. (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat. Genet., 36(4), 343–350. CrossRef Scholar google search
Canevari R.A., Marchi F.A., Domingues M.A., de Andrade V.P., Caldeira J.R., Verjovski-Almeida S., Rogatto S.R., Reis E.M. (2016) Identification of novel biomarkers associated with poor patient outcomes in invasive breast carcinoma. Tumor Biol., 37(10), 13855–13870. CrossRef Scholar google search
Mahdavi M., Nassiri M., Kooshyar M.M., Vakili-Azghandi M., Avan A., Sandry R., Pillai S., Lam A.K., Gopalan V. (2019) Hereditary breast cancer; genetic penetrance and current status with BRCA. J. Cell. Physiol., 234(5), 5741–5750. CrossRef Scholar google search
Akbari M.R., Lepage P., Rosen B., McLaughlin J., Risch H., Minden M., Narod S.A. (2014) PPM1D mutations in circulating white blood cells and the risk for ovarian cancer. J. Natl. Cancer Inst., 106(1), djt323. CrossRef Scholar google search
Pharoah P.D.P., Song H., Dicks E., Intermaggio M.P., Harrington P., Baynes C., Alsop K., Bogdanova N., Cicek M.S., Cunningham J.M., Fridley B.L., Gentry-Maharaj A., Hillemanns P., Lele S., Lester J., McGuire V., Moysich K.B., Poblete S., Sieh W., Sucheston-Campbell L., Widschwendter M., Whittemore A.S., Dork T., Menon U., Odunsi K., Goode E.L., Karlan B.Y., Bowtell D.D., Gayther S.A., Ramus S.J. (2016) PPM1D mosaic truncating variants in ovarian cancer cases may be treatment-related somatic mutations. J. Natl. Cancer Inst., 108(3), djv347. CrossRef Scholar google search
Han H.-S., Yu E., Song J.-Y., Park J.-Y., Jang S.J., Choi J. (2009) The estrogen receptor alpha pathway induces oncogenic Wip1 phosphatase gene expression. Mol. Cancer Res., 7(5), 713–723. CrossRef Scholar google search
Ali A.Y., Kim J.Y., Pelletier J.-F., Vanderhyden B.C., Bachvarov D.R., Tsang B.K. (2015) Akt confers cisplatin chemoresistance in human gynecological carcinoma cells by modulating PPM1D stability. Mol. Carcinog., 54(11), 1301–1314. CrossRef Scholar google search
Yin S., Wang P., Yang L., Liu Y., Wang Y., Liu M., Qi Z., Meng J., Shi T.Y., Yang G., Zang R. (2016) Wip1 suppresses ovarian cancer metastasis through the ATM/AKT/Snail mediated signaling. Oncotarget, 20(7), 29359–29370. CrossRef Scholar google search
Jiao L., Shen D., Liu G., Jia J., Geng J., Wang H., Sun Y. (2014) PPM1D as a novel biomarker for prostate cancer after radical prostatectomy. Anticancer Res., 34(6), 2919–2925. Scholar google search
Cardoso M., Paulo P., Maia S., Teixeira M.R. (2016) Truncating and missense PPM1D mutations in early-onset and/or familial/hereditary prostate cancer patients. Genes Chromosomes Cancer, 55(12), 954–961. CrossRef Scholar google search
Yokoyama A., Kakiuchi N., Yoshizato T., Nannya Y., Suzuki H., Takeuchi Y., Shiozawa Y., Sato Y., Aoki K., Kim S.K., Fujii Y., Yoshida K., Kataoka K., Nakagawa M.M., Inoue Y., Hirano T., Shiraishi Y., Chiba K., Tanaka H., Sanada M., Nishikawa Y., Amanuma Y., Ohashi S., Aoyama I., Horimatsu T., Miyamoto S., Tsunoda S., Sakai Y., Narahara M., Brown J.B., Sato Y., Sawada G., Mimori K., Minamiguchi S., Haga H., Seno H., Miyano S., Makishima H., Muto M., Ogawa S. (2019) Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature, 565(7739), 312–317. CrossRef Scholar google search
Ma D., Zhang C.-J., Chen Z.-L., Yang H. (2014) Prognostic value of PPM1D in 800 gastric cancer patients. Mol. Med. Rep., 10(1), 191–194. CrossRef Scholar google search
Fuku T., Semba S., Yutori H., Yokozaki H. (2007) Increased wild-type p53-induced phosphatase 1 (Wip1 or PPM1D) expression correlated with downregulation of checkpoint kinase 2 in human gastric carcinoma.Pathology Int., 57(9), 566–571. CrossRef Scholar google search
Li Z.-T., Zhang L., Gao X.-Z., Jiang X.-H., Sun L.-Q. (2013) Expression and significance of the Wip1 proto-oncogene in colorectal cancer. Asian Pac. J. Cancer Prev., 14(3), 1975–1979. CrossRef Scholar google search
Oliva-Trastoy M., Berthonaud V., Chevalier A., Ducrot C., Marsolier-Kergoat M.C., Mann C., Leteurtre F. (2007) The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase. Oncogene, 26(10), 1449–1458. CrossRef Scholar google search
Wang P., Zhao Y., Liu K., Liu X., Liang J., Zhou H., Wang Z., Zhou Z., Xu N. (2019) Wip1 cooperates with KPNA2 to modulate the cell proliferation and migration of colorectal cancer via a p53-dependent manner. J. Cell. Biochem., 120(9), 15709–15718. CrossRef Scholar google search
Li G.B., Zhang X.L., Yuan L., Jiao Q.Q., Liu D.J., Liu J. (2013) Protein phosphatase magnesium-dependent 1δ (PPM1D) mRNA expression is a prognosis marker for hepatocellular carcinoma. PLOS One, 8(3), e60775. CrossRef Scholar google search
Wu B., Guo B.-M., Kang J., Deng X.-Z., Fan Y.-B., Zhang X.-P., Ai K.-X. (2016) PPM1D exerts its oncogenic properties in human pancreatic cancer through multiple mechanisms. Apoptosis, 21(3), 365–378. CrossRef Scholar google search
Coombs C.C., Zehir A., Devlin S.M., Kishtagari A., Syed A., Jonsson P., Hyman D.M., Solit D.B., Robson M.E., Baselga J., Arcila M.E., Ladanyi M., Tallman M.S., Levine R.L., Berger M.F. (2017) Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell, 21(3), 374–382.e4. CrossRef Scholar google search
Xie M., Lu C., Wang J., McLellan M.D., Johnson K.J., Wendl M.C., McMichael J.F., Schmidt H.K., Yellapantula V., Miller C.A., Ozenberger B.A., Welch J.S., Link D.C., Walter M.J., Mardis E.R., Dipersio J.F., Chen F., Wilson R.K., Ley T.J., Ding L. (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med., 20(12), 1472–1478. CrossRef Scholar google search
Kamada R., Kudoh F., Yoshimura F., Tanino K., Sakaguchi K. (2017) Inhibition of Ser/Thr phosphatase PPM1D induces neutrophil differentiation in HL-60 cells. J. Biochemistry, 162(4), 303–308. CrossRef Scholar google search
Burocziova M., Danek P., Oravetzova A., Chalupova Z., Alberich-Jorda M., Macurek L. (2023) Ppm1d truncating mutations promote the development of genotoxic stress-induced AML. Leukemia, 37(11), 2209–2220. CrossRef Scholar google search
Yang H., Gao X.-Y., Li P., Jiang T.-S. (2015) PPM1D overexpression predicts poor prognosis in non-small cell lung cancer. Tumor Biol., 36(3), 2179–2184. CrossRef Scholar google search
Yang S., Dong S., Qu X., Zhong X., Zhang Q. (2017) Clinical significance of Wip1 overexpression and its association with the p38MAPK/p53/p16 pathway in NSCLC. Mol. Med. Rep., 15(2), 719–723. CrossRef Scholar google search
Deng K., Liu L., Tan X., Zhang Z., Li J., Ou Y., Wang X., Yang S., Xiang R., Sun P. (2020) WIP1 promotes cancer stem cell properties by inhibiting p38 MAPK in NSCLC. Signal Transduct. Target. Ther., 5(1), 36. CrossRef Scholar google search
Pekova B., Dvorakova S., Sykorova V., Vacinova G., Vaclavikova E., Moravcova J., Katra R., Vlcek P., Sykorova P., Kodetova D., Vcelak J., Bendlova B. (2019) Somatic genetic alterations in a large cohort of pediatric thyroid nodules. Endocrine Connections, 8(6), 796–805. CrossRef Scholar google search