The effect of the nitric oxide donor S-nitrosoglutathione on the level and activity of organic anion transporting polypeptide 1B1 (OATP1B1), as well as the expression of the SLCO1B1 gene encoding the transporter protein, was investigated in HepG2 cells. The study has shown that treatment of cells with S-nitrosoglutathione for 3 h did not influence the content and activity of OATP1B1. Incubation with S-nitrosoglutathione (10–500 μM) for 24 h increased SLCO1B1 expression, the content of OATP1B1, and activity of the transporter protein. Induction of the OATP1B1 protein by the NO donor was suppressed by the soluble guanylate cyclase (sGC) inhibitor, 10 μM ODQ (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxaline-1-OH). Thus, the study has shown that S-nitrosoglutathione, acting through the NO-sGC-cGMP signaling pathway, increased SLCO1B1 gene expression, accompanied by the increase in the transporter protein content and its activity in cells.
Suchkova O.N., Abalenikhina Yu.V., Shchul'kin A.V., Myl'nikov P.Yu., Gadzhiyeva F.T., Kochanova P.D., Uzbekov M.G., Yakusheva E.N. (2025) The inducing effect of S-nitrosoglutathione on the expression and activity of organic anion transporting polypeptide 1B1 (OATP1B1) in HepG2 cells. Biomeditsinskaya Khimiya, 71(1), 29-36.
Suchkova O.N. et al. The inducing effect of S-nitrosoglutathione on the expression and activity of organic anion transporting polypeptide 1B1 (OATP1B1) in HepG2 cells // Biomeditsinskaya Khimiya. - 2025. - V. 71. -N 1. - P. 29-36.
Suchkova O.N. et al., "The inducing effect of S-nitrosoglutathione on the expression and activity of organic anion transporting polypeptide 1B1 (OATP1B1) in HepG2 cells." Biomeditsinskaya Khimiya 71.1 (2025): 29-36.
Suchkova, O. N., Abalenikhina, Yu. V., Shchul'kin, A. V., Myl'nikov, P. Yu., Gadzhiyeva, F. T., Kochanova, P. D., Uzbekov, M. G., Yakusheva, E. N. (2025). The inducing effect of S-nitrosoglutathione on the expression and activity of organic anion transporting polypeptide 1B1 (OATP1B1) in HepG2 cells. Biomeditsinskaya Khimiya, 71(1), 29-36.
References
Svoboda M., Riha J., Wlcek K., Jaeger W., Thalhammer T. (2011) Organic anion transporting polypeptides (OATPs): Regulation of expression and function. Curr. Drug Metab., 12(2), 139–153. CrossRef Scholar google search
Schnegelberger R.D., Steiert B., Sandoval P.J., Hagenbuch B. (2022) Using a competitive counterflow assay to identify novel cationic substrates of OATP1B1 and OATP1B3. Front. Physiol., 8(13), 969363. CrossRef Scholar google search
Konig J., Cui Y., Nies A.T., Keppler D. (2000) Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J. Biol. Chem., 275(30), 23161–23168. CrossRef Scholar google search
Hagenbuch B., Gui C. (2008) Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica, 38(7–8), 778–801. CrossRef Scholar google search
Banerjee N., Allen C., Bendayan R. (2012) Differential role of organic anion-transporting polypeptides in estrone-3-sulphate uptake by breast epithelial cells and breast cancer cells. J. Pharmacol. Exp. Ther., 342(2), 510–519. CrossRef Scholar google search
Wen J., Zhao M. (2021) OATP1B1 Plays an important role in the transport and treatment efficacy of sorafenib in hepatocellular carcinoma. Dis. Markers, 26, 9711179. CrossRef Scholar google search
Obaidat A., Roth M., Hagenbuch B. (2012) The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu. Rev. Pharmacol. Toxicol., 52, 135–151. CrossRef Scholar google search
Libra A., Fernetti C., Lorusso V., Visigalli M., Anelli P.L., Staud F., Tiribelli C., Pascolo L. (2006) Molecular determinants in the transport of a bile acid-derived diagnostic agent in tumoral and nontumoral cell lines of human liver. J. Pharmacol. Exp. Ther., 319(2), 809–817. CrossRef Scholar google search
Cui Y., König J., Nies A.T., Pfannschmidt M., Hergt M., Franke W.W., Alt W., Moll R., Keppler D. (2003) Detection of the human organic anion transporters SLC21A6 (OATP2) and SLC21A8 (OATP8) in liver and hepatocellular carcinoma. Lab. Invest., 83(4), 527–538. CrossRef Scholar google search
Briz O., Serrano M.A., Rebollo N., Hagenbuch B., Meier P.J., Koepsell H., Marin J.J. (2002) Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol. Pharmacol., 61(4), 853–860. CrossRef Scholar google search
Shchulkin A.V., Abalenikhina Y.V., Sudakova E.A., Mylnikov P.Y., Yakusheva E.N. (2022) Mechanisms of regulation of the P-glycoprotein transporter protein functioning under the action of nitric oxide. Biochemistry (Moscow), 87(4), 366–379. CrossRef Scholar google search
Hwang, T.L., Wu C.C., Teng C.M. (1998) Comparison of two soluble guanylyl cyclase inhibitors, methylene blue and ODQ, on sodium nitroprusside-induced relaxation in guinea-pig trachea. Br. J. Pharmacol., 125, 1158–1163. CrossRef Scholar google search
Erokhina P.D., Myl'nikov P.Yu., Ganina S.O., Konyakhin E.A., Shchul'kin A.V., Slepnev A.A., Yakusheva E.N. (2022) Development and validation of the quantitative determination of atorvastatin in HepG2 cell line using high-performance liquid chromatography with mass-spectrometric detection. I.P. Pavlov Russian Medical Biological Herald, 30(2), 149–158. CrossRef Scholar google search
López-Terrada D., Cheung S.W., Finegold M.J., Knowles B.B. (2009) Hep G2 is a hepatoblastoma-derived cell line. Hum. Pathol., 40(10), 1512–1515. CrossRef Scholar google search
Chatuphonprasert W., Tukum-Mee W., Wattanathorn J., Jarukamjorn K. (2022) Impact of pineapple juice on expression of CYP3A4, NAT2, SULT1A1 and OATP1B1 mRNA in HepG2 cells. Pak. J. Biol. Sci., 25(1), 15–22. CrossRef Scholar google search
Choi J.M., Oh S.J., Lee S.Y., Im J.H., Oh J.M., Ryu C.S., Kwak H.C., Lee J.Y., Kang K.W., Kim S.K. (2015) HepG2 cells as an in vitro model for evaluation of cytochrome P450 induction by xenobiotics. Arch. Pharm. Res., 38(5), 691–704. CrossRef Scholar google search
Alam K., Crowe A., Wang X., Zhang P., Ding K., Li L., Yue W. (2018) Regulation of organic anion transporting polypeptides (OATP) 1B1- and OATP1B3-mediated transport: An updated review in the context of OATP-mediated drug-drug interactions. Int. J. Mol. Sci., 19(3), 855. CrossRef Scholar google search
Zhang W., He Y.J., Gan Z., Fan L., Li Q., Wang A., Liu Z.Q., Deng S., Huang Y.F., Xu L.Y., Zhou H.H. (2007) OATP1B1 polymorphism is a major determinant of serum bilirubin level but not associated with rifampicin-mediated bilirubin elevation. Clin. Exp. Pharmacol. Physiol., 34(12), 1240–1244. CrossRef Scholar google search
Whisenant T.C., Nigam S.K. (2022) Organic anion transporters (OAT) and other SLC22 transporters in progression of renal cell carcinoma. Cancers (Basel), 14(19), 4772. CrossRef Scholar google search
Shi C., Wu J.B., Chu G.C., Li Q., Wang R., Zhang C., Zhang Y., Kim H.L., Wang J., Zhau H.E., Pan D., Chung L.W. (2014) Hep-tamethine carbocyanine dye-mediated near-infrared imaging of canine and human cancers through the HIF-1α/OATPs signaling axis. Oncotarget., 5(20), 10114–10126. CrossRef Scholar google search
Broniowska A.K., Diers A.R., Hogg N. (2013) S-nitrosoglutathione. Biochim. Biophys. Acta, 1830(5), 3173–3181. CrossRef Scholar google search
Zhang Y., Sun C., Xiao G., Shan H., Tang L., Yi Y., Yu W., Gu Y. (2019) S-nitrosylation of the peroxiredoxin-2 promotes S-nitrosoglutathione-mediated lung cancer cells apoptosis via AMPK-SIRT1 pathway. Cell Death Dis., 10(5), 329. CrossRef Scholar google search
Zhao Y., Brandish P.E., di Valentin M., Schelvis J.P., Babcock G.T., Marletta M.A. (2000) Inhibition of soluble guanylate cyclase by ODQ. Biochemistry, 39(35), 10848–10854. CrossRef Scholar google search
Garrison D.A., Talebi Z., Eisenmann E.D., Sparreboom A., Baker S.D. (2020) Role of OATP1B1 and OATP1B3 in drug-drug interactions mediated by tyrosine kinase inhibitors. Pharmaceutics, 12(9), 856. CrossRef Scholar google search