1. Institute of Biomedical Chemistry, Moscow, Russia 2. Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia 3. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia 4. Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
The interaction of inactivated poliovirus vaccine strains with oriented antibodies immobilized to protein A via Fc fragments has been investigated. Using an SPR biosensor, the kinetic and equilibrium parameters of the interaction of vaccine attenuated polioviruses of the Sabin strains type 1 and type 2, inactivated by various methods were determined. The strongest interaction was observed between polyclonal antibodies to Sabin strain type 2 poliovirus and Sabin strain type 2 poliovirus inactivated with β-propiolactone, KD = 1.04⋅10-11 M, as well as the interaction of monoclonal antibodies to Sabin strain type 1 poliovirus and Sabin strain type 1 poliovirus inactivated with formaldehyde, KD = 1.39⋅10-11 M. The high-affinity interaction of inactivated vaccine polioviruses of the Sabin strains type 1 and type 2 with immobilized antibodies indicates that the D-antigen retained its structure after virus inactivation with β-propiolactone or formaldehyde.
Gnedenko O.V., Ivin Yu.Yu., Piniaeva A.N., Zyrina A.N., Levin I.V., Borisenko N.S., Zhdanov D.D., Ivanov A.S., Lisitsa A.V., Ishmukhametov A.A., Archakov A.I. (2025) The SPR analysis of the interaction of inactivated poliovirus vaccine attenuated strains with antibodies. Biomeditsinskaya Khimiya, 71(1), 59-64.
Gnedenko O.V. et al. The SPR analysis of the interaction of inactivated poliovirus vaccine attenuated strains with antibodies // Biomeditsinskaya Khimiya. - 2025. - V. 71. -N 1. - P. 59-64.
Gnedenko O.V. et al., "The SPR analysis of the interaction of inactivated poliovirus vaccine attenuated strains with antibodies." Biomeditsinskaya Khimiya 71.1 (2025): 59-64.
Gnedenko, O. V., Ivin, Yu. Yu., Piniaeva, A. N., Zyrina, A. N., Levin, I. V., Borisenko, N. S., Zhdanov, D. D., Ivanov, A. S., Lisitsa, A. V., Ishmukhametov, A. A., Archakov, A. I. (2025). The SPR analysis of the interaction of inactivated poliovirus vaccine attenuated strains with antibodies. Biomeditsinskaya Khimiya, 71(1), 59-64.
References
Shuker S.B., Hajduk P.J., Meadows R.P., Fesik S.W. (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science, 274(5292), 1531–1534. CrossRef Scholar google search
Mayer M., Meyer B. (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angewandte Chemie International Edition, 38(12), 1784–1788. CrossRef Scholar google search
Blundell T.L., Jhoti H., Abell C. (2002) High-throughput crystallography for lead discovery in drug design. Nat. Rev. Drug Discov., 1(1), 45–54. CrossRef Scholar google search
Duong-Thi M.-D., Bergström M., Fex T., Isaksson R., Ohlson S. (2013) High-throughput fragment screening by affinity LC-MS. J. Biomol. Screen., 18(2), 160–171. CrossRef Scholar google search
Ladbury J.E., Klebe G., Freire E. (2010) Adding calorimetric data to decision making in lead discovery: a hot tip. Nat. Rev. Drug Discov., 9(1), 23–27. CrossRef Scholar google search
Lewis L.M., Engle L.J., Pierceall W.E., Hughes D.E., Shaw K.J. (2004) Affinity capillary electrophoresis for the screening of novel antimicrobial targets. J. Biomol. Screen., 9(4), 303–308. CrossRef Scholar google search
Duong-Thi M.-D., Meiby E., Bergström M., Fex T., Isaksson R., Ohlson S. (2011) Weak affinity chromatography as a new approach for fragment screening in drug discovery. Anal. Biochem., 414(1), 138–146. CrossRef Scholar google search
Wang X., Li M., Lin Z., Pan H., Tang Z., Zheng Z., Li S., Zhang J., Xia N., Zhao Q. (2018) Multifaceted characterization of recombinant protein-based vaccines: an immunochemical toolbox for epitope-specific analyses of the hepatitis E vaccine. Vaccine, 36(50), 7650–7658. CrossRef Scholar google search
Yin X., Wang X., Zhang Z., Li Y., Lin Z., Pan H., Gu Y., Li S., Zhang J., Xia N., Zhao Q. (2020) Demonstration of real-time and accelerated stability of hepatitis E vaccine with a combination of different physicochemical and immunochemical methods. J. Pharm. Biomed. Anal., 177, 112880. CrossRef Scholar google search
Narayan K., Paduraru C., Blake T., Arunachalam A.B. (2023) Rapid determination of influenza vaccine potency by an SPR-based method using subtype or lineage-specific monoclonal antibodies. Front. Immunol., 14, 1128683. CrossRef Scholar google search
Wen Y., Trinh H.V., Linton C.E., Tani C., Norais N., Martinez-Guzman D., Ramesh P., Sun Y., Situ F., Karaca-Griffin S., Hamlin C., Onkar S., Tian S., Hilt S., Malyala P., Lodaya R., Li N., Otten G., Palladino G., Friedrich K., Aggarwal Y., LaBranche C., Duffy R., Shen X., Tomaras G.D., Montefiori D.C., Fulp W., Gottardo R., Burke B., Ulmer J.B., Zolla-Pazner S., Liao H.X., Haynes B.F., Michael N.L., Kim J.H., Rao M., O'Connell R.J., Carfi A., Barnett S.W. (2018) Generation and characterization of a bivalent protein boost for future clinical trials: HIV-1 subtypes CR01_AE and B gp120 antigens with a potent adjuvant. PLOS One, 13(4), e0194266. CrossRef Scholar google search
Deschuyteneer M., Elouahabi A., Plainchamp D., Plisnier M., Soete D., Corazza Y., Lockman L., Giannini S., Deschamps M. (2010) Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix™, the AS04-adjuvanted HPV-16 and -18 cervical cancer vaccine. Human Vaccines, 6(5), 407–419. CrossRef Scholar google search
Piniaeva A.N., Kovpak A.A., Ivin Y.Y., Shishova A.A., Sorokin A.A., Prostova M.A., Belyakova A.V., Siniugina A.A., Ishmukhametov A.A., Hapchaev Y.H., Gmyl A.P. (2021) Selection of sorbent for poliovirus vaccine strain concentrate purification by gel filtration. Biotekhnologiya, 37(6), 84–94. CrossRef Scholar google search
Piniaeva A., Ignatyev G., Kozlovskaya L., Ivin Y., Kovpak A., Ivanov A., Shishova A., Antonova L., Khapchaev Y., Feldblium I., Ivanova O., Siniugina A., Ishmukhametov A. (2021) Immunogenicity and safety of inactivated Sabin-strain polio vaccine “PoliovacSin”: clinical trials phase I and II. Vaccines, 9(6), 565. CrossRef Scholar google search
Wilton T., Dunn G., Eastwood D., Minor P.D., Martin J. (2014) Effect of formaldehyde inactivation on poliovirus. J. Virol., 88(20), 11955–11964. CrossRef Scholar google search
Jiang S.D., Pye D., Cox J.C. (1986) Inactivation of poliovirus with β-propiolactone. J. Biol. Stand., 14(2), 103–109. CrossRef Scholar google search
Elveborg S., Monteil V.M., Mirazimi A. (2022) Methods of inactivation of highly pathogenic viruses for molecular, serology or vaccine development purposes. Pathogens, 11(2), 271. CrossRef Scholar google search
Zhdanov D.D., Ivin Yu.Yu., Shishparenok A.N., Kraevskiy S.V., Kanashenko S.L., Agafonova L.E., Shumyantseva V.V., Gnedenko O.V., Pinyaeva A.N., Kovpak A.A., Ishmukhametov A.A., Archakov A.I. (2023) Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example. Biomeditsinskaya Khimiya, 69(5), 253–280. CrossRef Scholar google search
Wood D.J., Heath A.B., Sawyer L.A. (1995) A WHO collaborative study on assays of the antigenic content of inactivated poliovirus vaccines. Biologicals, 23(1), 83–94. CrossRef Scholar google search
Wood D.J., Heath A.B. (1995) A WHO collaborative study of immunogenicity assays of inactivated poliovirus vaccines. Biologicals, 23(4), 301–311. CrossRef Scholar google search
Kersten G., Hazendonk T., Beuvery C. (1999) Antigenic and immunogenic properties of inactivated polio vaccine made from Sabin strains. Vaccine, 17(15–16), 2059–2066. CrossRef Scholar google search
Westdijk J., Brugmans D., Martin J., van't Oever A., Bakker W.A.M., Levels L., Kersten G. (2011) Characterization and standardization of Sabin based inactivated polio vaccine: proposal for a new antigen unit for inactivated polio vaccines. Vaccine, 29(18), 3390–3397. CrossRef Scholar google search
Westdijk J., van der Maas L., Ten Have R., Kersten G. (2016) Measuring poliovirus antigenicity by surface plasmon resonance. Application for potency indicating assays. Methods Mol. Biol., 1387, 299–323. CrossRef Scholar google search
Agafonova L.E., Shumyantseva V.V., Ivin Yu.Yu., Piniaeva A.N., Kovpak A.A., Ishmukhametov A.A., Budnik S.V., Churyukin R.S., Zhdanov D.D., Archakov A.I. (2024) Electrochemical profiling of poliovirus particles inactivated by chemical method and ionizing radiation. Biomeditsinskaya Khimiya, 70(3), 161–167. CrossRef Scholar google search
Kovpak A.A., Ivin Y.Y., Piniaeva A.N., Khapchaev Y.K. Ozherelkov S.V., Belyakova A.V., Ishmukhametov A.A. (2021) Application of ultrafiltration membranes for purification and concentration of Sabin poliovirus type 1. Journal of Microbiology, Epidemiology and Immunobiology, 98(2), 135–143. CrossRef Scholar google search
Piniaeva A.N., Kovpak A.A., Ivin Y.Y., Sandzhieva S.H., Shishova A.A., Tсelykh I.O., Vasilenko V.E., Kaa K.V., Mazhed Zh.H., Khapchaev Yu.Kh., Siniugina A.A., Ishmukhametov A.A. (2022) Application of ion exchange chromatography in the development of technology to obtain inactivated poliovirus vaccine. Epidemiology and Vaccinal Prevention, 21(5), 107–119. CrossRef Scholar google search
Yablokov E., Sushko T., Ershov P., Florinskaya A., Gnedenko O., Shkel T., Grabovec I., Strushkevich N., Kaluzhskiy L., Usanov S., Gilep A., Ivanov A. (2019) A large-scale comparative analysis of affinity, thermodynamics and functional characteristics of twelve cytochrome P450 isoforms and their redox partners. Biochimie, 162, 156–166. CrossRef Scholar google search
Barykin E.P., Garifulina A.I., Tolstova A.P., Anashkina A.A., Adzhubei A.A., Mezentsev Y.V., Shelukhina I.V., Kozin S.A., Tsetlin V.I., Makarov A.A. (2020) Tetrapeptide Ac-HAEE-NH2 protects α4β2 nAChR from inhibition by Aβ. Int. J. Mol. Sci., 21(17), 6272. CrossRef Scholar google search
Ivanov A.S., Gnedenko O.V., Molnar A.A., Archakov A.I., Podust L.M. (2010) FMN binding site of yeast NADPH-cytochrome P450 reductase exposed at the surface is highly specific. ACS Chem. Biol., 5(8), 767–776. CrossRef Scholar google search
Rakhmetova S.Yu., Radko S.P., Gnedenko O.V., Bodoev N.V., Ivanov A.S., Archakov A.I. (2010) Comparative termodynamic analysis of thrombin interaction with anti-thrombin aptamers and their heterodimeric construct. Biomeditsinskaya Khimiya, 56(3), 404–411. CrossRef Scholar google search
Dubs M.C., Altschuh D., van Regenmortel M.H. (1992) Interaction between viruses and monoclonal antibodies studied by surface plasmon resonance. Immunol. Lett., 31(1), 59–64. CrossRef Scholar google search
Bright R.A., Carter D.M., Crevar C.J., Toapanta F.R., Steckbeck J.D., Cole K.S., Kumar N.M., Pushko P., Smith G., Tumpey T.M., Ross T.M. (2008) Cross-clade protective immune responses to influenza viruses with H5N1 HAand NAelicited by an influenza virus-like particle. PLOS One, 3(1), e1501. CrossRef Scholar google search