Renalase (RNLS) is a protein playing different roles inside and outside cells. A 20-mer synthetic peptide corresponding to the human RNLS amino acid sequence 220–239 (RP220) exhibits a number of pharmacologically attractive activities in vitro and in vivo and can bind to many renal intracellular proteins. The RP220 sequence contains several cleavage sites for extracellular and circulating proteases. Here, we investigated the interaction of model proteins with the renalase peptide RP220 and a synthetic peptide corresponding to the amino acid sequence of RNLS 224–232, named RP224-232. We also performed affinity-based proteomic profiling of normotensive rat kidney samples with these peptides as affinity ligands. The obtained results indicate that both peptides exhibit almost the same affinity for model proteins (pyruvate kinase and lactate dehydrogenase), and the kidney proteomic profiles differ slightly. At the same time, the relative content of a number of kidney proteins bound to the RP224-232 peptide was even higher than in the case of using RP220. This suggests that proteolytic processing of RP220 does not inactivate this peptide; moreover, it could contribute to the formation of shorter peptides with additional pharmacological activities.
Download PDF:
Keywords: renalase, proteolytic processing, renalase peptides RP220 and RP224-232, SPR biosensor, proteomic profiling of rat kidney
Citation:
Buneeva O.A., Fedchenko V.I., Gnedenko O.V., Kaloshina S.A., Medvedeva M.V., Zavyalova M.G., Ivanov A.S., Zgoda V.G., Medvedev A.E. (2025) Interaction of rat kidney proteins with the renalase peptide RP220 and its potential proteolytic fragment RP224-232: a comparative proteomic analysis. Biomeditsinskaya Khimiya, 71(1), 65-70.
Buneeva O.A. et al. Interaction of rat kidney proteins with the renalase peptide RP220 and its potential proteolytic fragment RP224-232: a comparative proteomic analysis // Biomeditsinskaya Khimiya. - 2025. - V. 71. -N 1. - P. 65-70.
Buneeva O.A. et al., "Interaction of rat kidney proteins with the renalase peptide RP220 and its potential proteolytic fragment RP224-232: a comparative proteomic analysis." Biomeditsinskaya Khimiya 71.1 (2025): 65-70.
Buneeva, O. A., Fedchenko, V. I., Gnedenko, O. V., Kaloshina, S. A., Medvedeva, M. V., Zavyalova, M. G., Ivanov, A. S., Zgoda, V. G., Medvedev, A. E. (2025). Interaction of rat kidney proteins with the renalase peptide RP220 and its potential proteolytic fragment RP224-232: a comparative proteomic analysis. Biomeditsinskaya Khimiya, 71(1), 65-70.
References
Xu J., Li G., Wang P., Velazquez H., Yao X., Li Y., Wu Y., Peixoto A., Crowley S., Desir G.V. (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J. Clin. Invest., 115(5), 1275–1280. CrossRef Scholar google search
Medvedev A.E., Veselovsky A.V., Fedchenko V.I. (2010) Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: achievements and unsolved problems. Biochemistry (Moscow), 75(8), 951–958. CrossRef Scholar google search
Baroni S., Milani M., Pandini V., Pavesi G., Horner D., Aliverti A. (2013) Is renalase a novel player in catecholaminergic signaling? The mystery of the catalytic activity of an intriguing new flavoenzyme. Curr. Pharm. Des., 19(14), 2540–2551. CrossRef Scholar google search
Desir G.V., Peixoto A.J. (2014) Renalase in hypertension and kidney disease. Nephrol. Dial. Transplant., 29(1), 22–28. CrossRef Scholar google search
Beaupre B.A., Hoag M.R., Roman J., Forsterling F.H., Moran G.R. (2015) Metabolic function for human renalase: oxidation of isomeric forms of beta-NAD(P)H that are inhibitory to primary metabolism. Biochemistry, 54(3), 795–806. CrossRef Scholar google search
Wang Y., Safirstein R., Velazquez H., Guo X.J., Hollander L., Chang J., Chen T.M., Mu J.J., Desir G.V. (2017) Extracellular renalase protects cells and organs by outside-in signalling. J. Cell Mol. Med., 21(7), 1260–1265. CrossRef Scholar google search
Kolodecik T.R., Reed A.M., Date K., Shugrue C.A., Patel V., Chung S.L., Desir G.V., Gorelick F.S. (2017) The serum protein renalase reduces injury in experimental pancreatitis. J. Biol. Chem., 292(51), 21047–21059. CrossRef Scholar google search
Wang L., Velazquez H., Chang J., Safirstein R., Desir G.V. (2015) Identification of a receptor for extracellular renalase. PLOS One, 10(4), e0122932. CrossRef Scholar google search
Pointer T.C., Gorelick F.S., Desir G.V. (2021) Renalase: a multi-functional signaling molecule with roles in gastrointestinal disease. Cells, 10(8), 2006. CrossRef Scholar google search
Kolodecik T.R., Guo X., Shugrue C.A., Guo X., Desir G.V., Wen L., Gorelick F. (2024) Renalase peptides reduce pancreatitis severity in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 327(3), G466–G480. CrossRef Scholar google search
Medvedev A., Kopylov A., Fedchenko V., Buneeva O. (2020) Is renalase ready to become a biomarker of ischemia? Int. J. Cardiol., 307, 179. CrossRef Scholar google search
Fedchenko V.I., Veselovsky A.V., Kopylov A.T., Kaloshina S.A., Medvedev A.E. (2022) Renalase may be cleaved in blood. Are blood chymotrypsin-like enzymes involved? Medical Hypotheses, 165, 110895. CrossRef Scholar google search
Buneeva O.A., Fedchenko V.I., Kaloshina S.A., Zavyalova M.G., Zgoda V.G., Medvedev A.E. (2024) Proteomic profiling of renal tissue of normo- and hypertensive rats with the renalase peptide RP220 as an affinity ligand. Biomeditsinkaya Khimiya, 70(3), 145–155. CrossRef Scholar google search
Scopes R.K., Stoter A. (1982) Purification of all glycolytic enzymes from one muscle extract. Methods Enzymol., 90 Pt E, 479–490. CrossRef Scholar google search
Buneeva O., Kopylov A., Gnedenko O., Medvedeva M., Veselovsky A., Ivanov A., Zgoda V., Medvedev A. (2023) Proteomic profiling of mouse brain pyruvate kinase binding proteins: a hint for moonlighting functions of PKM1? Int. J. Mol. Sci., 24(8), 7634. CrossRef Scholar google search
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254. CrossRef Scholar google search
Buneeva O.A., Kopylov A.T., Gnedenko O.V., Medvedeva M.V., Kapitsa I.G., Ivanova E.A., Ivanov A.S., Medvedev A.E. (2021) Changes in the mitochondrial subproteome of mouse brain Rpn13-binding proteins induced by the neurotoxin MPTP and the neuroprotector isatin. Biomeditsinkaya Khimiya, 67(1), 51–65. CrossRef Scholar google search