Renalase (RNLS) is a protein involved in the regulation of blood pressure; it has various functions inside and outside cells. The twenty-membered peptide RP220, corresponding to the amino acid sequence of human RNLS 220–239, reproduces a number of effects of extracellular RNLS and can bind to many intracellular proteins in the kidney. The RP220 sequence contains several cleavage sites for extracellular proteases, which could potentially produce RP224-232 and RP233-239 peptides. The aim of this work was to perform proteomic profiling of kidney tissue from normotensive Wistar Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) derived from WKY, using potential proteolytic fragments (RP224-232 and RP233-239) of the RP220 peptide as affinity ligands, and to compare these proteomic profiles with the profiles obtained using the parent RP220 peptide. The obtained results indicate that the relative content of proteins bound to the RNLS peptides in SHR, compared to that in WKY rats, changes most significantly in the case of the RP224-232 peptide. Almost all of these proteins, with a few exceptions, are associated with cardiovascular pathology, many with hypertension. The results of our work indicate that proteolytic processing of RP220 does not lead to the inactivation of this peptide, but to a change in its ligand/regulatory properties, as well as the repertoire of potential protein partners and, consequently, protein-protein interactions that may have possible pharmacological application.
Download PDF:
Keywords: renalase, renalase peptides RP220, RP224-232, and RP233-239, arterial hypertension, WKY and SHR rats, proteomic profiling of kidney tissue
Supplementary materials:
Citation:
Buneeva O.A., Fedchenko V.I., Kaloshina S.A., Zavyalova M.G., Zgoda V.G., Medvedev A.E. (2025) Interaction of kidney proteins of normal and hypertensive rats with fragments of renalase peptide RP220. Biomeditsinskaya Khimiya, 71(2), 103-115.
Buneeva O.A. et al. Interaction of kidney proteins of normal and hypertensive rats with fragments of renalase peptide RP220 // Biomeditsinskaya Khimiya. - 2025. - V. 71. -N 2. - P. 103-115.
Buneeva O.A. et al., "Interaction of kidney proteins of normal and hypertensive rats with fragments of renalase peptide RP220." Biomeditsinskaya Khimiya 71.2 (2025): 103-115.
Buneeva, O. A., Fedchenko, V. I., Kaloshina, S. A., Zavyalova, M. G., Zgoda, V. G., Medvedev, A. E. (2025). Interaction of kidney proteins of normal and hypertensive rats with fragments of renalase peptide RP220. Biomeditsinskaya Khimiya, 71(2), 103-115.
References
Xu J., Li G., Wang P., Velazquez H., Yao X., Li Y., Wu Y., Peixoto A., Crowley S., Desir G.V. (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J. Clin. Invest., 115(5), 1275–1280. CrossRef Scholar google search
Medvedev A.E., Veselovsky A.V., Fedchenko V.I. (2010) Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: achievements and unsolved problems. Biochemistry (Moscow), 75(8), 951–958. CrossRef Scholar google search
Desir G.V., Peixoto A.J. (2014) Renalase in hypertension and kidney disease. Nephrol. Dial. Transplant., 29(1), 22–28. CrossRef Scholar google search
Wang Y., Safirstein R., Velazquez H., Guo X.-J., Hollander L., Chang J., Chen T.-M., Mu J.-J., Desir G.V. (2017) Extracellular renalase protects cells and organs by outside-in signalling. J. Cell. Mol. Med., 21(7), 1260–1265. CrossRef Scholar google search
Pointer T.C., Gorelick F.S., Desir G.V. (2021) Renalase: a multi-functional signaling molecule with roles in gastrointestinal disease. Cells, 10(8), 2006. CrossRef Scholar google search
Fedchenko V.I., Veselovsky A.V., Kopylov A.T., Kaloshina S.A., Medvedev A.E. (2022) Renalase may be cleaved in blood. Are blood chymotrypsin-like enzymes involved? Medical Hypotheses, 165, 110895. CrossRef Scholar google search
Kolodecik T.R., Guo X., Shugrue C.A., Guo X., Desir G.V., Wen L., Gorelick F. (2024) Renalase peptides reduce pancreatitis severity in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 327(3), G466–G480. CrossRef Scholar google search
Buneeva O.A., Fedchenko V.I., Gnedenko O.V., Kaloshina S.A., Medvedeva M.V., Zavyalova M.G., Ivanov A.S., Zgoda V.G., Medvedev A.E. (2025) Interaction of rat kidney proteins with the renalase peptide RP220 and its potential proteolytic fragment RP224-232: a comparative proteomic analysis. Biomeditsinskaya Khimiya, 71(1), 65–70. CrossRef Scholar google search
Buneeva O.A., Fedchenko V.I., Kaloshina S.A., Zavyalova M.G., Zgoda V.G., Medvedev A.E. (2024) Proteomic profiling of renal tissue of normo- and hypertensive rats with the renalase peptide RP220 as an affinity ligand. Biomeditsinskaya Khimiya, 70(3), 145–155. CrossRef Scholar google search
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254. CrossRef Scholar google search
Buneeva O.A., Kopylov A.T., Gnedenko O.V., Medvedeva M.V., Kapitsa I.G., Ivanova E.A., Ivanov A.S., Medvedev A.E. (2021) Changes in the mitochondrial subproteome of mouse brain Rpn13-binding proteins induced by the neurotoxin MPTP and the neuroprotector isatin. Biomeditsinskaya Khimiya, 67(1), 51–65. CrossRef Scholar google search
Akins R., Tuan R. (1995) Ultrafast Protein Determinations Using Microwave Enhancement. In: The Protein Protocols Handbook (Walker J.M., ed.). Springer Protocols Handbooks. Humana Press, pp. 23–30. CrossRef Scholar google search
Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. (2009) Universal sample preparation method for proteome analysis. Nat. Methods, 6(5), 359–362. CrossRef Scholar google search
Buneeva O.A., Fedchenko V.I., Kaloshina S.A., Zavyalova M.G., Zgoda V.G., Medvedev A.E. (2024) Comparative proteomic analysis of renal tissue of normotensive and hypertensive rats. Biomeditsinskaya Khimiya, 70(2), 89–98. CrossRef Scholar google search
Shi Y., Lo C.-S., Chenier I., Maachi H., Filep J.G., Ingelfinger J.R., Zhang S.-L., Chan J.S.D. (2013) Overexpression of catalase prevents hypertension and tubulointerstitial fibrosis and normalization of renal angiotensin-converting enzyme-2 expression in Akita mice. Am. J. Physiol. Renal Physiol., 304(11), F1335–F1346. CrossRef Scholar google search
Wang L., Hou E., Wang Z., Sun N., He L., Chen L., Liang M., Tian Z. (2014) Analysis of metabolites in plasma reveals distinct metabolic features between Dahl salt-sensitive rats and consomic SS.13(BN) rats. Biochem. Biophys. Res. Commun., 450(1), 863–869. CrossRef Scholar google search
Quinonez S.C., Thoene J.G. (1993) Dihydrolipoamide Dehydrogenase Deficiency. In: GeneReviews® (Adam M.P., Feldman J., Mirzaa G.M., Pagon R.A., Wallace S.E., Amemiya A., eds.). University of Washington, Seattle, Seattle (WA). Scholar google search
Kang J., Brajanovski N., Chan K.T., Xuan J., Pearson R.B., Sanij E. (2021) Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct. Target. Ther., 6, 323. CrossRef Scholar google search
Bhavsar R.B., Makley L.N., Tsonis P.A. (2010) The other lives of ribosomal proteins. Hum. Genomics, 4(5), 327–344. CrossRef Scholar google search
Zhou X., Liao W.-J., Liao J.-M., Liao P., Lu H. (2015) Ribosomal proteins: functions beyond the ribosome. J. Mol. Cell Biol., 7(2), 92–104. CrossRef Scholar google search
Wang W., Nag S., Zhang X., Wang M.-H., Wang H., Zhou J., Zhang R. (2015) Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med. Res. Rev., 35(2), 225–285. CrossRef Scholar google search
Visinoni S., Khalid N.F.I., Joannides C.N., Shulkes A., Yim M., Whitehead J., Tiganis T., Lamont B.J., Favaloro J.M., Proietto J., Andrikopoulos S., Fam B.C. (2012) The role of liver fructose-1,6-bisphosphatase in regulating appetite and adiposity. Diabetes, 61(5), 1122–1132. CrossRef Scholar google search
Polak-Iwaniuk A., Harasim-Symbor E., Gołaszewska K., Chabowski A. (2019) How hypertension affects heart metabolism. Front. Physiol., 10, 435. CrossRef Scholar google search
Khitan Z., Kim D.H. (2013) Fructose: a key factor in the development of metabolic syndrome and hypertension. J. Nutr. Metab., 2013, 682673. CrossRef Scholar google search
Maciel L., de Oliveira D.F., Monnerat G., Campos de Carvalho A.C., Nascimento J.H.M. (2020) Exogenous 10 kDa-heat shock protein preserves mitochondrial function after hypoxia/reoxygenation. Front. Pharmacol., 11, 545. CrossRef Scholar google search
Lopez-Campistrous A., Hao L., Xiang W., Ton D., Semchuk P., Sander J., Ellison M.J., Fernandez-Patron C. (2008) Mitochondrial dysfunction in the hypertensive rat brain: respiratory complexes exhibit assembly defects in hypertension. Hypertension, 51(2), 412–419. CrossRef Scholar google search
Wang C., Zhang L., Zhang Q., Zheng H., Yang X., Cai W., Zou Q., Lin J., Zhang L., Zhong L., Li X., Liao Y., Liu Q., Chen L., Li Y. (2024) Transketolase drives the development of aortic dissection by impairing mitochondrial bioenergetics. Acta Physiol, 240(4), e14113. CrossRef Scholar google search
Duan Y., Tang H., Mitchell-Silbaugh K., Fang X., Han Z., Ouyang K. (2020) Heat shock protein 60 in cardiovascular physiology and diseases. Front. Mol. Biosci., 7, 73. CrossRef Scholar google search
Lee M.-J., Stephenson D.A., Groves M.J., Sweeney M.G., Davis M.B., An S.-F., Houlden H., Salih M.A.M., Timmerman V., de Jonghe P., Auer-Grumbach M., di Maria E., Scaravilli F., Wood N.W., Reilly M.M. (2003) Hereditary sensory neuropathy is caused by a mutation in the delta subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct4) gene. Hum. Mol. Genet., 12(15), 1917–1925. CrossRef Scholar google search
Dikalov S.I., Ungvari Z. (2013) Role of mitochondrial oxidative stress in hypertension. Am. J. Physiol. Heart Circ. Physiol., 305(10), H1417–H1427. CrossRef Scholar google search
Shashidhar K.N., Lakshmaiah V., Muninarayana C., Nallagangula K.S. (2021) Quantitative ELISA for SERPINA4/kallistatin. BioTechniques, 71(5), 556–565. CrossRef Scholar google search
Krishna S.M., Li J., Wang Y., Moran C.S., Trollope A., Huynh P., Jose R., Biros E., Ma J., Golledge J. (2021) Kallistatin limits abdominal aortic aneurysm by attenuating generation of reactive oxygen species and apoptosis. Sci. Rep., 11, 17451. CrossRef Scholar google search
Cox K.B., Liu J., Tian L., Barnes S., Yang Q., Wood P.A. (2009) Cardiac hypertrophy in mice with long-chain acyl-CoA dehydrogenase or very long-chain acyl-CoA dehydrogenase deficiency. Lab. Invest, 89(12), 1348–1354. CrossRef Scholar google search
Jeong H.Y., Park K.M., Lee M.J., Yang D.H., Kim S.H., Lee S.-Y. (2017) Vitamin D and hypertension. Electrolyte Blood Press., 15(1), 1–11. CrossRef Scholar google search
Smolock E.M., Korshunov V.A., Glazko G., Qiu X., Gerloff J., Berk B.C. (2012) Ribosomal protein L17, RpL17, is an inhibitor of vascular smooth muscle growth and carotid intima formation. Circulation, 126(20), 2418–2427. CrossRef Scholar google search
Liu R., Proud C.G. (2016) Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases. Acta Pharmacol. Sin., 37(3), 285–294. CrossRef Scholar google search
Singh J., Jackson K.L., Tang F.S., Fu T., Nowell C., Salimova E., Kiriazis H., Ritchie R.H., Head G.A., Woodman O.L., Qin C.X. (2024) The pro-resolving mediator, annexin A1 regulates blood pressure, and age-associated changes in cardiovascular function and remodeling. FASEB J., 38(3), e23457. CrossRef Scholar google search
Pan C.-H., Chien Y.-C., Sung M.-S., Huang H.-Y., Sheu M.-J., Wu C.-H. (2021) Pathological role of phosphoglycerate kinase 1 in balloon angioplasty-induced neointima formation. Int. J. Mol. Sci., 22(16), 8822. CrossRef Scholar google search
Balhara M., Neikirk K., Marshall A., Hinton A. Jr., Kirabo A. (2024) Endoplasmic reticulum stress in hypertension and salt sensitivity of blood pressure. Curr. Hypertens. Rep., 26(6), 273–290. CrossRef Scholar google search
Shi X., Jiang X., Chen C., Zhang Y., Sun X. (2022) The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: implications for therapy. Pharmacol. Res., 184, 106452. CrossRef Scholar google search
Goldman J.A., Kuzu G., Lee N., Karasik J., Gemberling M., Foglia M.J., Karra R., Dickson A.L., Sun F., Tolstorukov M.Y., Poss K.D. (2017) Resolving heart regeneration by replacement histone profiling. Dev. Cell, 40(4), 392–404.e5. CrossRef Scholar google search
Pascal A., Gallaud E., Giet R., Benaud C. (2022) Annexin A2 and Ahnak control cortical NuMA-dynein localization and mitotic spindle orientation. J. Cell Sci., 135(9), jcs259344. CrossRef Scholar google search
Szelenberger R., Jóźwiak P., Kacprzak M., Bijak M., Zielińska M., Olender A., Saluk-Bijak J. (2022) Variations in blood platelet proteome and transcriptome revealed altered expression of transgelin-2 in acute coronary syndrome patients. Int. J. Mol. Sci., 23(11), 6340. CrossRef Scholar google search
Li J., Swope D., Raess N., Cheng L., Muller E.J., Radice G.L. (2011) Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of β-catenin signaling. Mol. Cell. Biol., 31(6), 1134–1144. CrossRef Scholar google search
Noureddine M., Mikolajek H., Morgan N.V., Denning C., Loughna S., Gehmlich K., Mohammed F. (2025) Structural and functional insights into α-actinin isoforms and their implications in cardiovascular disease. J. Gen. Physiol., 157(2), e202413684. CrossRef Scholar google search
Li X., Shi S., Li Z., Wang Y., Qi X., Zhang R., Liu Z., Cheng Y. (2024) Heterogeneous nuclear ribonucleoprotein A2/B1 promotes myocardial fibrosis by regulating the miR-221-3p/FOXO4-mediated inflammation. Clin. Transl. Med., 14(3), e1616. CrossRef Scholar google search
Brandão M., Bariani R., Rigato I., Bauce B. (2023) Desmoplakin cardiomyopathy: comprehensive review of an increasingly recognized entity. J. Clin. Med., 12(7), 2660. CrossRef Scholar google search
Liu L., Wang C., Mi Y., Liu D., Li L., Fan J., Nan L., Jia N., Du Y. (2016) Association of MYH9 polymorphisms with hypertension in patients with chronic kidney disease in China. Kidney Blood Press. Res., 41(6), 956–965. CrossRef Scholar google search
James J., Dejesus V., Rafikova O., Rafikov R. (2024) Abstract 4146556: Stratifin is a critical target in pulmonary hypertension. Circulation, 150(Suppl_1), A4146556–A4146556. CrossRef Scholar google search
Gómez-Baena G., Armstrong S.D., Halstead J.O., Prescott M., Roberts S.A., McLean L., Mudge J.M., Hurst J.L., Beynon R.J. (2019) Molecular complexity of the major urinary protein system of the Norway rat, Rattus norvegicus. Sci. Rep., 9, 10757. CrossRef Scholar google search
Li Y., Zhang D., Kong L., Shi H., Tian X., Gao L., Liu Y., Wu L., Du B., Huang Z., Liang C., Wang Z., Yao R., Zhang Y. (2018) Aldolase promotes the development of cardiac hypertrophy by targeting AMPK signaling. Exp. Cell Res., 370(1), 78–86. CrossRef Scholar google search
Sato M., Yanagisawa H., Nojima Y., Tamura J.,Wada O. (2002) Zn deficiency aggravates hypertension in spontaneously hypertensive rats: possible role of Cu/Zn-superoxide dismutase. Clin. Exp. Hypertens., 24(5), 355–370. CrossRef Scholar google search
Yanagisawa H., Sato M., Nodera M., Wada O. (2004) Excessive zinc intake elevates systemic blood pressure levels in normotensive rats — potential role of superoxide-induced oxidative stress. J. Hypertens., 22(3), 543–550. CrossRef Scholar google search
El-Khazragy N., El Barbary M., Fouad H., Abdelgawad A., Rabie D. (2021) Association between genetic variations in carbamoyl-phosphate synthetase gene and persistent neonatal pulmonary hypertension. Eur. J. Pediatr., 180(9), 2831–2838. CrossRef Scholar google search
Guerreiro J.R., Lameu C., Oliveira E.F., Klitzke C.F., Melo R.L., Linares E., Augusto O., Fox J.W., Lebrun I., Serrano S.M.T., Camargo A.C.M. (2009) Argininosuccinate synthetase is a functional target for a snake venom anti-hypertensive peptide: role in arginine and nitric oxide production. J. Biol. Chem., 284(30), 20022–20033. CrossRef Scholar google search
Zhou T., Yang H., Wang H., Luo N., Xia Y., Jiang X. (2022) Association between ACAT1 rs1044925 and increased hypertension risk in Tongdao Dong. Medicine (Baltimore), 101(49), e32196. CrossRef Scholar google search
Bonnet S., Paulin R. (2019) Involvement of PFKFB3 in pulmonary arterial hypertension pathogenesis. Is it all about glycolysis? Am. J. Respir. Crit. Care Med., 200(5), 532–534. CrossRef Scholar google search
Calvier L., Herz J., Hansmann G. (2022) Interplay of low-density lipoprotein receptors, LRPs, and lipoproteins in pulmonary hypertension. JACC Basic Transl. Sci., 7(2), 164–180. CrossRef Scholar google search
Longoni M., Kantarci S., Donnai D., Pober B.R. (1993) Donnai-Barrow Syndrome. In: GeneReviews® (Adam M.P., Feldman J., Mirzaa G.M., Pagon R.A., Wallace S.E., Amemiya A., eds.). University of Washington, Seattle, Seattle (WA). Scholar google search
Sendra J., Llorente-Cortés V., Costales P., Huesca-Gómez C., Badimon L. (2008) Angiotensin II upregulates LDL receptorrelated protein (LRP1) expression in the vascular wall: a new pro-atherogenic mechanism of hypertension. Cardiovasc. Res., 78(3), 581–589. CrossRef Scholar google search
Barawkar D.A., Meru A., Bandyopadhyay A., Banerjee A., Deshpande A.M., Athare C., Koduru C., Khose G., Gundu J., Mahajan K., Patil P., Kandalkar S.R., Niranjan S., Bhosale S., De S., Mukhopadhyay S., Chaudhary S., Koul S., Singh U., Chugh A., Palle V.P., Mookhtiar K.A., Vacca J., Chakravarty P.K., Nargund R.P., Wright S.D., Roy S., Graziano M.P., Singh S.B., Cully D., Cai T.-Q. (2011) Potent and selective inhibitors of long chain l-2-hydroxy acid oxidase reduced blood pressure in DOCA salt-treated rats. ACS Med. Chem. Lett., 2(12), 919–923. CrossRef Scholar google search
Meng C., Jin X., Xia L., Shen S.-M., Wang X.-L., Cai J., Chen G.-Q., Wang L.-S., Fang N.-Y. (2009) Alterations of mitochondrial enzymes contribute to cardiac hypertrophy before hypertension development in spontaneously hypertensive rats. J. Proteome Res., 8(5), 2463–2475. CrossRef Scholar google search
Jeong S.-J., Park J.-G., Oh G.T. (2021) Peroxiredoxins as potential targets for cardiovascular disease. Antioxidants (Basel), 10(8), 1244. CrossRef Scholar google search
Jiang L., Gong Y., Hu Y., You Y., Wang J., Zhang Z., Wei Z., Tang C. (2020) Peroxiredoxin-1 overexpression attenuates doxorubicin-induced cardiotoxicity by inhibiting oxidative stress and cardiomyocyte apoptosis. Oxid. Med. Cell. Longev., 2020, 2405135. CrossRef Scholar google search
Zhou M., Guo J., Li S., Li A., Fang Z., Zhao M., Zhang M., Wang X. (2023) Effect of peroxiredoxin 1 on the regulation of trophoblast function by affecting autophagy and oxidative stress in preeclampsia. J. Assist. Reprod. Genet., 40(7), 1573–1587. CrossRef Scholar google search
Zhang L., Chen Q., An W., Yang F., Maguire E.M., Chen D., Zhang C., Wen G., Yang M., Dai B., Luong L.A., Zhu J., Xu Q., Xiao Q. (2017) Novel pathological role of hnRNPA1 (heterogeneous nuclear ribonucleoprotein A1) in vascular smooth muscle cell function and neointima hyperplasia. Arterioscler. Thromb. Vasc. Biol., 37(11), 2182–2194. CrossRef Scholar google search
Furuhashi M. (2019) Fatty acid-binding protein 4 in cardiovascular and metabolic diseases. J. Atheroscler. Thromb., 26(3), 216–232. CrossRef Scholar google search
Rao C., Liu B., Huang D., Chen R., Huang K., Li F., Dong N. (2021) Nucleophosmin contributes to vascular inflammation and endothelial dysfunction in atherosclerosis progression. J. Thorac. Cardiovasc. Surg., 161(5), e377–e393. CrossRef Scholar google search
Fang L., Shen Z., Zhang Y., Mao Z., Huang D., Lou C. (2025) Nucleolin in the cell membrane promotes Ang II-mediated VSMC phenotypic switching by regulating the AT1R internalization function: nucleolin promotes Ang II-mediated VSMC phenotypic switching. Biol. Direct, 20(1), 24. CrossRef Scholar google search
Lakshmikanthan S., Zieba B.J., Ge Z.-D., Momotani K., Zheng X., Lund H., Artamonov M.V., Maas J.E., Szabo A., Zhang D.X., Auchampach J.A., Mattson D.L., Somlyo A.V., Chrzanowska-Wodnicka M. (2014) Rap1b in smooth muscle and endothelium is required for maintenance of vascular tone and normal blood pressure. Arterioscler. Thromb. Vasc. Biol., 34(7), 1486–1494. CrossRef Scholar google search
Mattox T.A., Psaltis C., Weihbrecht K., Robidoux J., Kilburg-Basnyat B., Murphy M.P., Gowdy K.M., Anderson E.J. (2021) Prohibitin-1 is a dynamically regulated blood protein with cardioprotective effects in sepsis. J. Am. Heart Assoc., 10(14), e019877. CrossRef Scholar google search
Wu L., Li H., Chen H., Fan C., Lu Y., Wei R., Yang G., Jia Y. (2023) The clinical utility of circulating cell division control 42 in small-vessel coronary artery disease patients undergoing drug-coated balloon treatment. BMC Cardiovasc. Disord., 23, 496. CrossRef Scholar google search