1. Sechenov University, Martsinovsky Institute of Medical Parasitology, Moscow, Russia 2. Sechenov University, Martsinovsky Institute of Medical Parasitology, Moscow, Russia; Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia 3. Sechenov University, Martsinovsky Institute of Medical Parasitology, Moscow, Russia; Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, Russia
N6-methyladenosine (m6A) is a common RNA modification, which plays a critical role in RNA fate and regulating such aspects as splicing, stability, nuclear export, and translation efficiency. The introduction, removal, and recognition of m6A modifications in RNA are regulated by a number of factors, known as writer, eraser, and reader proteins. It is known that the m6A modification can play an important role in the life cycle of viruses, including hepatitis B virus. The m6A methylation system has a significant impact on the hepatitis B viral cycle (HBV), particularly, on stability of mRNA transcripts, encapsidation efficiency, and reverse transcription of HBV pgRNA. In this study, we assessed the effect of knockout and activation of expression of several factors of the m6A methylation system on the HBV viral cycle, including pregenomic RNA (pgRNA) and circular covalently closed DNA (cccDNA). The study was carried out using the StCas9 nuclease system for knockout and the dCas9-p300 system for activation of gene expression. The levels of pgRNA and cccDNA were estimated by real-time PCR. The data obtained show the restriction of the viral cycle at the basal level by the factors METTL3, METTL14, METTL16, FTO, JMJD6, and hnRNPA2B1, as well as suppression of the viral cycle with overexpression of all of the above factors, except for hnRNPA2B1.
Download PDF:
Keywords: hepatitis B, m6A factors, cccDNA, pgRNA
Citation:
Kachanov A.V., Brezgin S.A., Ponomareva N.I., Lukashev A.N., Chulanov V.P., Kostyushev D.S., Kostyusheva A.P. (2025) The m6A methylation system limits hepatitis B virus replication. Biomeditsinskaya Khimiya, 71(2), 127-136.
Kachanov A.V. et al. The m6A methylation system limits hepatitis B virus replication // Biomeditsinskaya Khimiya. - 2025. - V. 71. -N 2. - P. 127-136.
Kachanov A.V. et al., "The m6A methylation system limits hepatitis B virus replication." Biomeditsinskaya Khimiya 71.2 (2025): 127-136.
Kachanov, A. V., Brezgin, S. A., Ponomareva, N. I., Lukashev, A. N., Chulanov, V. P., Kostyushev, D. S., Kostyusheva, A. P. (2025). The m6A methylation system limits hepatitis B virus replication. Biomeditsinskaya Khimiya, 71(2), 127-136.
References
Magnius L., Mason W.S., Taylor J., Kann M., Glebe D., Dény P., Sureau C., Norder H., ICTV Report Consortium (2020) ICTV virus taxonomy profile: Hepadnaviridae. J. Gen. Virol., 101(6), 571–572. CrossRef Scholar google search
Yuen M.-F., Chen D.-S., Dusheiko G.M., Janssen H.L.A., Lau D.T.Y., Locarnini S.A., Peters M.G., Lai C.-L. (2018) Hepatitis B virus infection. Nat. Rev. Dis. Primers, 4(1), 1–20. CrossRef Scholar google search
Mendenhall M.A., Hong X., Hu J. (2023) Hepatitis B virus capsid: the core in productive entry and covalently closed circular DNA formation. Viruses, 15(3), 642. CrossRef Scholar google search
Tsukuda S., Watashi K. (2020) Hepatitis B virus biology and life cycle. Antiviral Res., 182, 104925. CrossRef Scholar google search
Wei L., Ploss A. (2021) Hepatitis B virus cccDNA is formed through distinct repair processes of each strand. Nat. Commun., 12(1), 1591. CrossRef Scholar google search
Seeger C., Mason W.S. (2015) Molecular biology of hepatitis B virus infection. Virology, 479–480, 672–686. CrossRef Scholar google search
Ko C., Chakraborty A., Chou W.-M., Hasreiter J., Wettengel J.M., Stadler D., Bester R., Asen T., Zhang K., Wisskirchen K., McKeating J.A., Ryu W.-S., Protzer U. (2018) Hepatitis B virus genome recycling and de novo secondary infection events maintain stable cccDNA levels. J. Hepatol., 69(6), 1231–1241. CrossRef Scholar google search
Kostyushev D., Kostyusheva A., Brezgin S., Ponomareva N., Zakirova N.F., Egorshina A., Yanvarev D.V., Bayurova E., Sudina A., Goptar I., Nikiforova A., Dunaeva E., Lisitsa T., Abramov I., Frolova A., Lukashev A., Gordeychuk I., Zamyatnin A.A. Jr., Ivanov A., Chulanov V. (2023) Depleting hepatitis B virus relaxed circular DNA is necessary for resolution of infection by CRISPR-Cas9. Molecular Therapy. Nucleic Acids, 31, 482–493. CrossRef Scholar google search
Brezgin S., Kostyusheva A., Bayurova E., Gordeychuk I., Isaguliants M., Goptar I., Nikiforova A., Smirnov V., Volchkova E., Glebe D., Kostyushev D., Chulanov V. (2019) Replenishment of hepatitis B virus cccDNA pool is restricted by baseline expression of host restriction factors in vitro. Microorganisms, 7(11), 533. CrossRef Scholar google search
Jiang X., Liu B., Nie Z., Duan L., Xiong Q., Jin Z., Yang C., Chen Y. (2021) The role of m6A modification in the biological functions and diseases. Signal Transduct. Target. Ther., 6(1), 1–16. CrossRef Scholar google search
Karandashov I., Kachanov A., Dukich M., Ponomareva N., Brezgin S., Lukashev A., Pokrovsky V.S., Chulanov V., Kostyusheva A., Kostyushev D. (2024) m6A methylation in regulation of antiviral innate immunity. Viruses, 16(4), 601. CrossRef Scholar google search
Dominissini D., Moshitch-Moshkovitz S., Schwartz S., Salmon-Divon M., Ungar L., Osenberg S., Cesarkas K., Jacob-Hirsch J., Amariglio N., Kupiec M., Sorek R., Rechavi G. (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485(7397), 201–206. CrossRef Scholar google search
Wang S., Lv W., Li T., Zhang S., Wang H., Li X., Wang L., Ma D., Zang Y., Shen J., Xu Y., Wei W. (2022) Dynamic regulation and functions of mRNA m6A modification. Cancer Cell Int., 22(1), 48. CrossRef Scholar google search
Kostyusheva A., Brezgin S., Glebe D., Kostyushev D., Chulanov V. (2021) Host-cell interactions in HBV infection and pathogenesis: the emerging role of m6A modification. Emerg. Microbes Infect., 10(1), 2264–2275. CrossRef Scholar google search
Imam H., Khan M., Gokhale N.S., McIntyre A.B.R., Kim G.-W., Jang J.Y., Kim S.-J., Mason C.E., Horner S.M., Siddiqui A. (2018) N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle. Proc. Natl. Acad. Sci. USA, 115(35), 8829–8834. CrossRef Scholar google search
Kim G.-W., Moon J.-S., Siddiqui A. (2022) N6-methyladenosine modification of the 5′ epsilon structure of the HBV pregenome RNA regulates its encapsidation by the viral core protein. Proc. Natl. Acad. Sci. USA, 119(7), e2120485119. CrossRef Scholar google search
Murata T., Iwahori S., Okuno Y., Nishitsuji H., Yanagi Y., Watashi K., Wakita T., Kimura H., Shimotohno K. (2023) N6-methyladenosine modification of hepatitis B virus RNA in the coding region of HBX. Int. J. Mol. Sci., 24(3), 2265. CrossRef Scholar google search
Kim G.-W., Siddiqui A. (2021) Hepatitis B virus X protein recruits methyltransferases to affect cotranscriptional N6-methyladenosine modification of viral/host RNAs. Proc. Natl. Acad. Sci. USA, 118(3), e2019455118. CrossRef Scholar google search
Kim G.-W., Imam H., Khan M., Siddiqui A. (2020) N6-methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling. J. Biol. Chem., 295(37), 13123–13133. CrossRef Scholar google search
Kim G.-W., Imam H., Khan M., Mir S.A., Kim S.-J., Yoon S.K., Hur W., Siddiqui A. (2021) HBV-induced increased N6 methyladenosine modification of PTEN RNA affects innate immunity and contributes to HCC. Hepatology, 73(2), 533–547. CrossRef Scholar google search
Imam H., Kim G.-W., Mir S.A., Khan M., Siddiqui A. (2020) Interferon-stimulated gene 20 (ISG20) selectively degrades N6-methyladenosine modified hepatitis B virus transcripts. PLoS Pathogens, 16(2), e1008338. CrossRef Scholar google search
Jiang F., Doudna J.A. (2017) CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys., 46, 505–529. CrossRef Scholar google search
Hao M., Cui Y., Qu X. (2018) Analysis of CRISPR-Cas system in streptococcus thermophilus and its application. Front. Microbiol., 9, 257. CrossRef Scholar google search
Hep G2 [HEPG2] - HB-8065 | ATCC. Retrieved June 25, 2024, from: https://www.atcc.org/products/hb-8065 Scholar google search
Minicircle Technology | System Biosciences. Retrieved June 25, 2024, from: https://www.systembio.com/ products/gene-expression-systems/minicircle-technology. Scholar google search
Guo X., Chen P., Hou X., Xu W., Wang D., Wang T., Zhang L., Zheng G., Gao Z., He C.-Y., Zhou B., Chen Z.-Y. (2016) The recombined cccDNA produced using minicircle technology mimicked HBV genome in structure and function closely. Sci. Rep., 6(1), 25552. CrossRef Scholar google search
Campenhout C.V., Cabochette P., Veillard A.-C., Laczik M., Zelisko-Schmidt A., Sabatel C., Dhainaut M., Vanhollebeke B., Gueydan C., Kruys V. (2019) Guidelines for optimized gene knockout using CRISPR/Cas9. BioTechniques, 66(6), 295–302. CrossRef Scholar google search
CHOPCHOP. Retrieved January 15, 2025, from: https://chopchop.cbu.uib.no/. Scholar google search
Brezgin S., Kostyusheva A., Kostyushev D., Chulanov V. (2019) Dead Cas systems: types, principles, and applications. Int. J. Mol. Sci., 20(23), 6041. CrossRef Scholar google search
Kostyushev D., Kostyusheva A., Brezgin S., Zarifyan D., Utkina A., Goptar I., Chulanov V. (2019) Suppressing the NHEJ pathway by DNA-PKcs inhibitor NU7026 prevents degradation of HBV cccDNA cleaved by CRISPR/Cas9. Sci. Rep., 9(1), 1847. CrossRef Scholar google search
Kostyushev D., Brezgin S., Kostyusheva A., Zarifyan D., Goptar I., Chulanov V. (2019) Orthologous CRISPR/Cas9 systems for specific and efficient degradation of covalently closed circular DNA of hepatitis B virus. Cell. Mol. Life Sci., 76(9), 1779–1794. CrossRef Scholar google search