The role of the redox signaling system (H₂О₂ and the thiol system) in the regulation of the functional activity of nervous tissue in health and disease
The review highlights the role of reactive oxygen species (ROS) and the thiol system in the regulation of functional activity of neurons. Their controlling function has been analyzed in the context of processes of synaptic plasticity and functioning of neurotrophins, as well as participation in such cellular processes as proliferation, apoptosis, and cell aging. Special attention has been paid to the role of individual components of the thiol system, their interaction with H₂О₂ in the regulation of the redox signaling system of cells. Summarizing literature data reflecting the participation of H₂О₂ in the regulation of key metabolic cascades of nervous tissue and own results we have come to conclusion about the dual nature of the stress system components depending on the functional state of the organism. The manifestation of their toxic effect, first of all, depends on their concentration and chemical structure.
Dubinina E.E., Shchedrina L.V., Gomzyakova N.A. (2025) The role of the redox signaling system (H₂О₂ and the thiol system) in the regulation of the functional activity of nervous tissue in health and disease. Biomeditsinskaya Khimiya, 71(4), 243-255.
Dubinina E.E. et al. The role of the redox signaling system (H₂О₂ and the thiol system) in the regulation of the functional activity of nervous tissue in health and disease // Biomeditsinskaya Khimiya. - 2025. - V. 71. -N 4. - P. 243-255.
Dubinina E.E. et al., "The role of the redox signaling system (H₂О₂ and the thiol system) in the regulation of the functional activity of nervous tissue in health and disease." Biomeditsinskaya Khimiya 71.4 (2025): 243-255.
Dubinina, E. E., Shchedrina, L. V., Gomzyakova, N. A. (2025). The role of the redox signaling system (H₂О₂ and the thiol system) in the regulation of the functional activity of nervous tissue in health and disease. Biomeditsinskaya Khimiya, 71(4), 243-255.
References
Sies H., Jones D.P. (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol., 21(7), 363–383. CrossRef Scholar google search
Dubinina E.E., Shchedrina L.V., Mazo G.E. (2018) The basic biochemical aspects of the pathogenesis of depression. Part 1. Uspekhi Fiziologicheskikh Nauk, 49(1), 28–49. Scholar google search
Dubinina E.E. (2006) Oxygen Metabolism Products and Functional Activity of Cells (Life and Death. Creation and Destruction). St. Petersburg: Med. Pressa, 397 p. Scholar google search
Averill-Bates D. (2024) Reactive oxygen species and cell signaling. Review. Biochim. Biophys. Acta Mol. Cell Res., 1871(2), 119573. CrossRef Scholar google search
Cobley J.N., Fiorello M.L., Bailey D.M. (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol., 15, 490–503. CrossRef Scholar google search
Sies H., Belousov V.V., Chandel N.S., Davies M.J., Jones D.P., Mann G.E., Murphy M.P., Yamamoto M., Winterbourn C. (2022) Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol., 23(7), 499–515. CrossRef Scholar google search
Winterbourn C.C. (2020) Hydrogen peroxide reactivity and specificity in thiol-based cell signalling. Biochem. Soc. Trans., 48(3), 745–754. CrossRef Scholar google search
Ulrich K., Jakob U. (2019) The role of thiols in antioxidant systems. Free Radic. Biol. Med., 140, 14–27. CrossRef Scholar google search
Martinovich G.G., Cherenkevich S.N. (2008) Redox homeostasis of cells. Uspekhi Fiziologicheskikh Nauk, 39(3), 29–44. Scholar google search
Janssen-Heininger Y.M., Mossman B.T., Heintz N.H., Forman H.J., Kalyanaraman B., Finkel T., Stamler J.S., Rhee S.G., van der Vliet A. (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic. Biol. Med., 45(1), 1–17. CrossRef Scholar google search
Winterbourn C.C. (2018) Biological production, detection, and fate of hydrogen peroxide. Antioxid. Redox Signal., 29(6), 541–551. CrossRef Scholar google search
Fossati P., Radtchenko A., Boyer P. (2004) Neuroplasticity: from MRI to depressive symptoms. Eur. Neuropsychopharmacol., 14(suppl 5), S503–S510. CrossRef Scholar google search
Ravid T., Sweeney C., Geet P., Carraway K.L. 3rd, Goldkorn T. (2002) Epidermal growth factor receptor activation under oxidative stress fails to promote c-Cbl mediated down-regulation. J. Biol. Chem., 277(34), 31214–31219. CrossRef Scholar google search
Waterman H., Yarden Y. (2001) Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett., 490(3), 142–152. CrossRef Scholar google search
Barrett W.C., Degnore J.P., Keng Y.F., Zhang Z.Y., Yim M.B., Chock P.B. (1999) Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J. Biol. Chem., 274(49), 34543–34546. CrossRef Scholar google search
Rhee S.G., Kang S.W., Jeong W., Chang T.-S., Yang K.-S., Woo H.A. (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell. Biol., 17(2), 183–189. CrossRef Scholar google search
Thannickal V.J., Fanburg B.L. (2000) Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol., 279(6), 1005–1028. CrossRef Scholar google search
Martindale J.L., Holbrook N.J. (2002) Cellular response to oxidative stress: signaling for suicide and survival. J. Cell. Physiol., 192(1), 1–15. CrossRef Scholar google search
Tanner J.J., Parsons Z.D., Cummings A.H., Zhou H., Gates K.S. (2011) Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Antioxid Redox Signal., 15(1), 77–97. CrossRef Scholar google search
Tonks N.K. (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell, 121(5), 667–670. CrossRef Scholar google search
Lee S.-R., Yang K.-S., Kwon J., Lee C., Jeong W., Rhee S.G. (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J. Biol. Chem., 277(23), 20336–20342. CrossRef Scholar google search
Leslie N.R., Bennett D., Lindsay Y.E., Stewart H., Gray A., Downes C.P. (2003) Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J., 22(20), 5501–5510. CrossRef Scholar google search
Dubinina E.E., Shchedrina L.V., Mazo G.E. (2021) The main biochemical aspects of the pathogenesis of depression, Part II. Uspekhi Fiziologicheskih Nauk, 52(1), 31–48. CrossRef Scholar google search
di Paolo G., de Camilli P. (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature, 443(7112), 651–657. CrossRef Scholar google search
Hawkins P.T., Anderson K.E., Davidson K., Stephens L.R. (2006) Signalling through class I PI3Ks in mammalian cells. Biochem. Soc. Trans., 34(Pt 5), 647–662. CrossRef Scholar google search
Tkachuk V.A., Tyurin-Kuzmin P.A., Belousov V.V., Vorotnikov A.V. (2012) Hydrogen peroxide as a new second messenger. Biological Membranes, 29(1–2), 21–37. Scholar google search
Esposito F., Chirico G., Montesano Gesualdi N., Posadas I., Ammendola R., Russo T., Cirino G., Cimino F. (2003) Protein kinase B activation by reactive oxygen species is independent of tyrosine kinase receptor phosphorylation and requires SRC activity. J. Biol. Chem., 278(23), 20828–20834. CrossRef Scholar google search
Herold S., Jagasia R., Merz K., Wassmer K., Liel D.C. (2011) CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol. Cell. Neurosci., 46(1), 79–88. CrossRef Scholar google search
Datta S.R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., Greenberg M.E. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 91(2), 231–241. CrossRef Scholar google search
del Peso L., González-García M., Page C., Herrera R., Nuñez G. (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science, 278(5338), 687–689. CrossRef Scholar google search
Gomazkov O.A. (2013) Neurogenesis as an Adaptive Function of the Brain. Ikar, Moscow, 136 p. Scholar google search
Beurel E., Grieco S.F., Jope R.S. (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol. Ther., 148, 114–131. CrossRef Scholar google search
Eshchenko E.D. (2004) Biochemistry of Mental and Nervous Diseases. St. Petersburg, 200 p. Scholar google search
Smythies J. (1999) Redox mechanisms at the glutamate synapse and their significance: a review. Eur. J. Pharmacol., 370(1), 1–7. CrossRef Scholar google search
Lafon-Cazal M., Pietri S., Culcasi M., Bockaert J. (1993) NMDA-dependent superoxide production and neurotoxicity. Nature, 364(6437), 535–537. CrossRef Scholar google search
Yao J.K., Reddy R.D., van Kammen D.P. (2001) Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs, 15(4), 287–310. CrossRef Scholar google search
Do K.Q., Trabesinger A.H., Kirsten-Krüger M., Lauer C.J., Dydak U., Hell D., Holsboer F., Boesiger P., Cuénod M. (2000) Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur. J. Neurosci., 12(10), 3721–3728. CrossRef Scholar google search
Janssen-Heininger Y.M.W., Poynter M.E., Baeuerle P.A. (2000) Recent advances towards understanding redox mechanisms in the activation of nuclear factor-B. Free Radic. Biol. Med., 28(9), 1317–1327. CrossRef Scholar google search
Turpaev K.T. (2002) Reactive oxygen species and regulation of gene expression. Biochemistry (Moscow), 67(3), 281–292. CrossRef Scholar google search
Michiels C., Minet E., Mottet D., Raes M. (2002) Regulation of gene expression by oxygen: NF-κB and HIF-1, two extremes. Free Radic. Biol. Med., 33(9), 1231–1242. CrossRef Scholar google search
Билан Д.C., Шохина А.Г., Лукьянов С.А., Белоусов В.В. (2015) Основные редокс-пары клетки. Биоорганическая химия, 41(4), 385–402. CrossRef Scholar google search
Circu M.L., Aw T.Y. (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med., 48(6), 749–762. CrossRef Scholar google search
Oktyabrsky O.N., Smirnova G.N. (2007) Redox regulation of cellular functions. Biochemistry (Moscow), 72(2), 132–145. CrossRef Scholar google search
Baxter P.S., Hardingham G.E. (2016) Adaptive regulation of the brain's antioxidant defences by neurons and astrocytes. Free Radic. Biol. Med., 100, 147–152. CrossRef Scholar google search
Bell K.F.S., Al-Mubarak B., Martel M.-A., McKay S., Wheelan N., Hasel P., Márkus N.M., Baxter P., Deighton R.F., Serio A., Bilican B., Chowdhry S., Meakin P.J., Ashford M.L., Wyllie D.J., Scannevin R.H., Chandran S., Hayes J.D., Hardingham G.E. (2015) Neuronal development is promoted by weakened intrinsic antioxidant defences due to epigenetic repression of Nrf2. Nat. Commun., 6, 7066. CrossRef Scholar google search
Diaz-Hernandez J.I., Almeida A., Delgado-Esteban M., Fernandez E., Bolaños J.P. (2005) Knockdown of glutamate-cysteine ligase by small hairpin RNA reveals that both catalytic and modulatory subunits are essential for the survival of primary neurons. J. Biol. Chem., 280(47), 38992–39001. CrossRef Scholar google search
Maher P. (2018) Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: implications for age-related neurodegenerative diseases. Free Radic. Biol. Med., 115, 92–104. CrossRef Scholar google search
Fernandez-Fernandez S., Bobo-Jimenez V., Requejo-Aguilar R., Gonzalez-Fernandez S., Resch M., Carabias-Carrasco M., Ros J., Almeida A., Bolaños J.P. (2018) Hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function. Redox Biol., 19, 52–61. CrossRef Scholar google search
Liu H., Wang H., Shenvi S., Hagen T.M., Liu R.-M. (2004) Glutathione metabolism during aging and in Alzheimer disease. Ann. N.Y. Acad. Sci., 1019, 346–349. CrossRef Scholar google search
Paolicchi A., Dominici S., Pieri L., Maellaro E., Pompella A. (2002) Glutathione catabolism as a signaling mechanism. Biochem. Pharmacol., 64(5–6), 1027–1035. CrossRef Scholar google search
Mailloux R.J., Harper M.-E. (2011) Uncoupling proteins and the control of mitochondrial reactive oxygen species production, Free Radic. Biol. Med., 51(6), 1106–1115. CrossRef Scholar google search
Gallogly M.M., Mieyal J.J. (2007) Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol., 7(4), 381–391. CrossRef Scholar google search
Ogata F.T., Branco V., Vale F.F., Coppo L. (2021) Glutaredoxin: discovery, redox defense and much more. Redox Biol., 43, 101975. CrossRef Scholar google search
Schlößer M., Moseler A., Bodnar Y., Homagk M., Wagner S., Pedroletti L., Gellert M., Ugalde J.M., Lillig C.H., Meyer A.J. (2024) Localization of four class I glutaredoxins in the cytosol and the secretory pathway and characterization of their biochemical diversification. Plant J., 118(5), 1455–1474. CrossRef Scholar google search
Hwang S., Iram S., Jin J., Choi I., Kim J. (2022) Analysis of S-glutathionylated proteins during adipocyte differentiation using eosin-glutathione and glutaredoxin 1. BMB Reports, 55(3), 154–159. CrossRef Scholar google search
Chai Y.C., Mieyal J.J. (2023) Glutathione and glutaredoxin — key players in cellular redox homeostasis and signaling. Antioxidants, 12(8), 1553. CrossRef Scholar google search
López-Grueso M.J., González-Ojeda R., Requejo-Aguilar R., McDonagh B., Fuentes-Almagro C.A., Muntané J., Bárcena J.A., Padilla C.A. (2019) Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches. Redox Biol., 21, 101049. CrossRef Scholar google search
Mailloux R.J., Seifert E.L., Bouillaud F., Aguer C., Collins S., Harper M.-E. (2011) Glutathionylation acts as a control switch for uncoupling proteins UCP2 and UCP3. J. Biol. Chem., 286(24), 21865–21875. CrossRef Scholar google search
Balsera M., Buchanan B.B. (2019) Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress. Free Radic. Biol. Med., 140, 28–35. CrossRef Scholar google search
Corteselli E.M., Sharafi M., Hondal R., MacPherson M., White S., Lam Y.-W., Gold C., Manuel A.M., van der Vliet A., Schneebeli S.T., Anathy V., Li J., Janssen-Heininger Y.M.W. (2023) Structural and functional fine mapping of cysteines in mammalian glutaredoxin reveal their differential oxidation susceptibility. Nat. Commun., 14, 4550. CrossRef Scholar google search
Калинина Е.В., Новичкова М.Д. (2023) S-Глутатионилирование и S-нитрозилирование как модуляторы редокс-зависимых процессов в опухолевой клетке, Биохимия, 88(7), 1137–1161. CrossRef Scholar google search
Chen M., Wang J., Yang, Y., Zhong T., Zhou P., Ma H., Li J., Li D., Zhou J., Xie S., Liu M. (2021) Redox-dependent regulation of end-binding protein 1 activity by glutathionylation. Sci. China Life Sci., 64(4), 575–583. CrossRef Scholar google search
Pan S., Berk B.C. (2007) Glutathiolation regulates tumor necrosis factor-alpha-induced caspase-3 cleavage and apoptosis: key role for glutaredoxin in the death pathway. Circ. Res., 100(2), 213–219. CrossRef Scholar google search
Huang Z., Pinto J.T., Deng H., Richie J.P. Jr. (2008) Inhibition of caspase-3 activity and activation by protein glutathionylation. Biochem. Pharmacol., 75(11), 2234–2244. CrossRef Scholar google search
Шарапов М.Г., Гудков С.В., Ланкин В.З. (2021) Гидропероксид-восстанавливающие ферментные системы в регуляции свободнорадикальных процессов. Биохимия, 86(10), 1479–1501. CrossRef Scholar google search
Шарапов М.Г., Гудков С.В., Ланкин В.З., Новоселов В.И. (2021) Роль глутатионпероксидаз и пероксиредоксинов при свободнорадикальных патологиях. Биохимия, 86(11), 1635–1653. CrossRef Scholar google search
Wood Z.A., Schröder E., Harris R.J., Poole L.B. (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci., 28(1), 32–40. CrossRef Scholar google search
Rhee S.G., Woo H.A. (2020) Multiple functions of 2-Cys peroxiredoxins, I and II, and their regulations via post-translational modifications. Free Radic. Biol. Med., 152, 107–115. CrossRef Scholar google search
Peskin A.V., Meotti F.C., Magon N.J., de Souza L.F., Salvador A., Winterbourn C.C. (2025) Mechanism of glutathionylation of the active site thiols of peroxiredoxin 2. J. Biol. Chem., 301(5), 108503. CrossRef Scholar google search
Riquier S., Breton J., Abbas K., Cornu D., Bouton C., Drapier J.-C. (2014) Peroxiredoxin post-translational modifications by redox messengers. Redox Biol., 2, 777–785. CrossRef Scholar google search
Bolduc J., Koruza K., Luo T., Pueyo J.M., Vo T.N., Ezeriņa D., Messens J. (2021) Peroxiredoxins wear many hats: factors that fashion their peroxide sensing personalities. Redox Biol., 42, 101959. CrossRef Scholar google search
Karplus P.A. (2015) A primer on peroxiredoxin biochemistry. Free Radic. Biol. Med., 80, 183–190. CrossRef Scholar google search
Wood Z.A., Poole L.B., Karplus P.A. (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science, 300(5619), 650–653. CrossRef Scholar google search
Forman H.J. (2007) Use and abuse of exogenous H2O2 in studies of signal transduction. Free Radic. Biol. Med., 42(7), 926–932. CrossRef Scholar google search
Hanschmann E.-M., Godoy J.R., Berndt C., Hudemann C., Lillig C.H. (2013) Thioredoxins, glutaredoxins, and peroxiredoxins — molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid. Redox Signal., 19(13), 1539–1605. CrossRef Scholar google search
Marinho H.S., Real C., Cyrne L., Soares H., Antunes F. (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol., 2, 535–562. CrossRef Scholar google search
Hansen J.M., Go Y.M., Jones D.P. (2006) Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu. Rev. Pharmacol. Toxicol., 46, 215–234. CrossRef Scholar google search
Watson W.H., Jones D.P. (2003) Oxidation of nuclear thioredoxin during oxidative stress. FEBS Lett., 543(1–3), 144–147. CrossRef Scholar google search
Yin F., Sancheti H., Patil I., Cadenas E. (2016) Energy metabolism and inflammation in brain aging and Alzheimer's disease. Free Radic. Biol. Med., 100, 108–122. CrossRef Scholar google search
McBean G.J., Aslan M., Griffiths H.R., Torrão R.C. (2015) Thiol redox homeostasis in neurodegenerative disease. Redox Biol., 5, 186–194. CrossRef Scholar google search
Stocker S., van Laer K., Mijuskovic A., Dick T.P. (2018) The conundrum of hydrogen peroxide signaling and the emerging role of peroxiredoxins as redox relay hubs. Antioxid. Redox Signal., 28(7), 558–573. CrossRef Scholar google search
Rhee S.G., Woo H.A., Kang D. (2018) The role of peroxiredoxins in the transduction of H2O2 signals. Antioxid. Redox Signal., 28(7), 537–557. CrossRef Scholar google search
Sobotta M.C., Liou W., Stöcker S., Talwar D., Oehler M., Ruppert T., Scharf A.N., Dick T.P. (2015) Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol., 11(1), 64–70. CrossRef Scholar google search
Jarvis R.M., Hughes S.M., Ledgerwood E.C. (2012) Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med., 53(7), 1522–1530. CrossRef Scholar google search
Ying J., Clavreul N., Sethuraman M., Adachi T., Cohen R.A. (2007) Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications. Free Radic. Biol. Med., 43(8), 1099–1108. CrossRef Scholar google search
Sitia R., Molteni S.N. (2004) Stress, protein (mis)folding, and signaling: the redox connection. Science STKE, 2004(239), pe27. CrossRef Scholar google search
Poole L.B., Karplus P.A., Claiborn A. (2004) Protein sulfenic asids in redox signaling. Annu. Rev. Pharmacol. Toxicol., 44, 325–347. CrossRef Scholar google search
Angelova P.R. (2021) Sources and triggers of oxidative damage in neurodegeneration. Free Radic. Biol. Med., 173, 52–63. CrossRef Scholar google search
Granol M., Moosmann B., Staib-Lasarzik I., Arendt T., del Rey A., Engelhard K., Behl C., Hajieva P. (2015) High membrane protein oxidation in the human cerebral cortex. Redox Biol., 4, 200–207. CrossRef Scholar google search
Wadhwa R., Gupta R., Maurya P.K. (2018) Oxidative stress and accelerated aging in neurodegenerative and neuropsychiatric disorder. Curr. Pharm. Des., 24(40), 4711–4725. CrossRef Scholar google search
Zalutskaya N.M., Dubinina E.E., Gomzyakova N.A., Yushchin K.V., Neznanov N.G. (2024) Oxidative stress and metabolic syndrome in Alzheimer’s disease: the search for a relationship. V.M. Bekhterev Review of Psychiatry and Medical Psychology, 58(4-2), 20–28. CrossRef Scholar google search
Liu Z., Zhou T., Ziegler A.C., Dimitrion P., Zuo L. (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid. Med. Cell. Longev., 2017, 2525967. CrossRef Scholar google search
Dubinina E.E., Shchedrina L.V., Neznanov N.G., Zalutskaya N.M., Zakharchenko D.V. (2015) Oxidative stress and its effect on cells functional activity of Alzheimer's disease. Biomeditsinskaya Khimiya, 61(1), 57–69. CrossRef Scholar google search
Neznanov N.G., Zalutskaya N.M., Dubinina E.E., Zakharchenko D.V., Shchedrina L.V., Ananyeva N.I., Yushchin K.V., Kubarskaya L.G., Dagayev S.G., Trilis Ya.G. (2013) A comparative study of parameters of oxidative stress in mental health problems in later life (Alzheimer’s disease, vascular dementia, depressive disorder). V.M. Bekhterev Review of Psychiatry and Medical Psychology, 4, 31–38. Scholar google search
Thomas M.H., Pelleieux S., Vitale N., Olivier J.L. (2016) Dietary arachidonic acid as a risk factor for age-associated neurodegenerative diseases: potential mechanisms. Biochimie, 130, 168–177. CrossRef Scholar google search
Dubinina E.E., Shedrina L.V., Yushchin K.V., Zalutskaya N.M., Ananyeva N.I., Gomzyakova N.A., Neznanov N.G., Svetkina E.V. (2020) Comparative analysis of unsaturated indicators fatty acids in elderly patients in initial stages of Alzheimer's disease and vascular dementia. Advances in Gerontology, 33(2), 265–272. CrossRef Scholar google search
Menshikova E.B., Lankin V.Z., Zenkov N.K., Bondar I.A., Krugovykh N.F., Trufakin V.A. (2006) Oxidative Stress. Prooxidants and Antioxidants. Slovo, Moscow, 556 p. Scholar google search
Dubinina E.E., Dadali V.A. (2010) Role of 4-hydroxy-trans-2-nonenal in cell functions. Biochemistry (Moscow), 75(9), 1069–1087. CrossRef Scholar google search