Mass spectrometric data obtained using a model of tandem carotid artery stenosis in mice with unstable and stable atherosclerosis were analyzed to identify differences in the level of post-translational modifications (PTMs) of proteins. The original proteomic data obtained by Chen et al. [DOI: 10.1038/s42003-023-04641-4] and deposited in the PRIDE repository (identifier PXD030857) were used. Based on results of the bioinformatic analysis, 12 proteins with PTMs (methylation, acetylation, and phosphorylation) were selected; comparison of healthy and atherosclerotic vascular sections showed that the selected proteins were characterized by significant changes in the level of individual modified peptides. According to the literature data, all 12 proteins are involved in the process of atherogenesis. Our study thus revealed putative points of regulation of the atherogenesis processes at the PTM level.
Miroshnichenko Yu.V., Rybina A.V., Skvortsov V.S. (2025) Bioinformatic identification of proteins with varying levels of post-translational modifications in a model of atherogenesis in mice. Biomeditsinskaya Khimiya, 71(4), 308-313.
Miroshnichenko Yu.V. et al. Bioinformatic identification of proteins with varying levels of post-translational modifications in a model of atherogenesis in mice // Biomeditsinskaya Khimiya. - 2025. - V. 71. -N 4. - P. 308-313.
Miroshnichenko Yu.V. et al., "Bioinformatic identification of proteins with varying levels of post-translational modifications in a model of atherogenesis in mice." Biomeditsinskaya Khimiya 71.4 (2025): 308-313.
Miroshnichenko, Yu. V., Rybina, A. V., Skvortsov, V. S. (2025). Bioinformatic identification of proteins with varying levels of post-translational modifications in a model of atherogenesis in mice. Biomeditsinskaya Khimiya, 71(4), 308-313.
References
Knorre D.G., Kudryashova N.V., Godovikova T.S. (2009) Chemical and functional aspects of posttranslational modification of proteins. Acta Naturae, 1(3), 29–51. CrossRef Scholar google search
Ke M., Shen H., Wang L., Luo S., Lin L., Yang J., Tian R. (2016) Identification, quantification, and site localization of protein posttranslational modifications via mass spectrometry-based proteomics. Adv. Exp. Med. Biol., 919, 345–382. CrossRef Scholar google search
Thygesen C., Boll I., Finsen B., Modzel M., Larsen M.R. (2018) Characterizing disease-associated changes in post-translational modifications by mass spectrometry. Expert Rev. Proteomics, 15(3), 245–258. CrossRef Scholar google search
Zhao G., Zhen J., Liu X., Guo J., Li D., Xie J., Xie L. (2022) Protein post-translational modification by lysine succinylation: biochemistry, biological implications, and therapeutic opportunities. Genes Dis., 10(4), 1242–1262. CrossRef Scholar google search
Ramazi S., Zahiri J. (2021) Posttranslational modifications in proteins: resources, tools and prediction methods. Database, 2021, baab012. CrossRef Scholar google search
Gajjala P.R., Fliser D., Speer T., Jankowski V., Jankowski J. (2015) Emerging role of post-translational modifications in chronic kidney disease and cardiovascular disease. Nephrol. Dial. Transplant., 30(11), 1814–1824. CrossRef Scholar google search
Kaysheva A.L., Kopylov A.T., Ponomarenko E.A., Kiseleva O.I., Teryaeva N.B., Potapov A.A., Izotov A.А., Morozov S.G., Kudryavtseva V.Yu., Archakov A.I. (2018) Relative abundance of proteins in blood plasma samples from patients with chronic cerebral ischemia. J. Mol. Neurosci., 64(3), 440–448. CrossRef Scholar google search
Prus G., Hoegl A., Weinert B.T., Choudhary C. (2019) Analysis and interpretation of protein post-translational modification site stoichiometry. Trends Biochem. Sci., 44(11), 943–960. CrossRef Scholar google search
Jiang W., Agrawal D.K., Boosani C.S. (2018) Cell-specific histone modifications in atherosclerosis (review). Mol. Med. Rep., 18(2), 1215–1224. CrossRef Scholar google search
Tuli L., Tsai T.H., Varghese R.S., Xiao J.F., Cheema A., Ressom H.W. (2012) Using a spike-in experiment to evaluate analysis of LC-MS data. Proteome Sci., 10, 13. CrossRef Scholar google search
Martens L., Hermjakob H., Jones P., Adamski M., Taylor C., States D., Gevaert K., Vandekerckhove J., Apweiler R. (2005) PRIDE: the proteomics identifications database. Proteomics, 5(13), 3537–3545. CrossRef Scholar google search
Chen Y.-C., Smith M., Ying Y.-L., Makridakis M., Noonan J., Kanellakis P., Rai A., Salim A., Murphy A., Bobik A., Vlahou A., Greening D.W., Peter K. (2023) Quantitative proteomic landscape of unstable atherosclerosis identifies molecular signatures and therapeutic targets for plaque stabilization. Commun. Biol., 6(1), 265. CrossRef Scholar google search
Ma B., Zhang K., Hendrie C., Liang C., Li M., Doherty-Kirby A., Lajoie G. (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom., 17(20), 2337–2342. CrossRef Scholar google search
The UniProt Consortium (2020) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res., 49(D1), D480–D489. CrossRef Scholar google search
Progenesis LC-MS version 4.0, Nonlinear Dynamics, Newcastle upon Tyne, UK. Scholar google search
Jimenez Jimenez A.M., Haddad Y., Jemelikova V., Adam V., Merlos Rodrigo M.A. (2025) Multifaceted role of transgelin isoforms in cancer hallmarks. Carcinogenesis, 46(2), bgaf014. CrossRef Scholar google search
Eslava-Alcon S., Extremera-García M.J., González-Rovira A., Rosal-Vela A., Rojas-Torres M., Beltran-Camacho L., Sanchez-Gomar I., Jiménez-Palomares M., Alonso-Piñero J.A., Conejero R., Doiz E., Olarte J., Foncubierta-Fernández A., Lozano E., García-Cozar F.J., Rodríguez-Piñero M., Alvarez-Llamas G., Duran-Ruiz M.C. (2020) Molecular signatures of atherosclerotic plaques: an up-dated panel of protein related markers. J. Proteomics, 221, 103757. CrossRef Scholar google search
Wang J., Kang Z., Liu Y., Li Z., Liu Y., Liu J. (2022) Identification of immune cell infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated bioinformatics analysis and machine learning. Front. Immunol., 13, 956078. CrossRef Scholar google search
Zhai K., Deng L., Wu Y., Li H., Zhou J., Shi Y., Jia J., Wang W., Nian S., Khan J.G., El-Seedi H.R., Duan H., Li L., Wei Z.J. (2025) Extracellular vesicle-derived miR-146a as a novel crosstalk mechanism for high-fat induced atherosclerosis by targeting SMAD4. J. Adv. Res., 73, 729–741. CrossRef Scholar google search
Chung J., Shim H., Kim K., Lee D., Kim W.J., Kang D.H., Kang S.W., Jo H., Kwon K. (2016) Discovery of novel peptides targeting pro-atherogenic endothelium in disturbed flow regions-targeted siRNA delivery to pro-atherogenic endothelium in vivo. Sci. Rep., 6, 25636. CrossRef Scholar google search
Bandaru S., Ala C., Zhou A.-X., Akyürek L.M. (2021) Filamin A regulates cardiovascular remodeling. Int. J. Mol. Sci., 22(12), 6555. CrossRef Scholar google search
Rasmussen M., Jin J.-P. (2024) Mechanoregulation and function of calponin and transgelin. Biophys. Rev., 5(1), 011302. CrossRef Scholar google search
Mohr T., Haudek-Prinz V., Slany A., Grillari J., Micksche M., Gerner C. (2017) Proteome profiling in IL-1β and VEGFactivated human umbilical vein endothelial cells delineates the interlink between inflammation and angiogenesis. PLOS One, 12(6), e0179065. CrossRef Scholar google search
Norby F.L., Tang W., Pankow J.S., Lutsey P.L., Alonso A., Steffen B.T., Chen L.Y., Zhang M., Shippee N.D., Ballantyne C.M., Boerwinkle E., Coresh J., Folsom A.R. (2021) Proteomics and risk of atrial fibrillation in older adults (from the atherosclerosis risk in communities [ARIC] study). Am. J. Cardiol., 161, 42–50. CrossRef Scholar google search
van Kuijk K., McCracken I.R., Tillie R.J.H.A., Asselberghs S.E.J., Kheder D.A., Muitjens S., Jin H., Taylor R.S., Wichers Schreur R., Kuppe C., Dobie R., Ramachandran P., Gijbels M.J., Temmerman L., Kirkwoord P.M., Luyten J., Li Y., Noels H., Goossens P., Wilson-Kanamori J.R., Schurgers L.J., Shen Y.H., Mees B.M.E., Biessen E.A.L., Henderson N.C., Kramann R., Baker A.H., Sluimer J.C. (2023) Human and murine fibroblast single-cell transcriptomics reveals fibroblast clusters are differentially affected by ageing and serum cholesterol. Cardiovasc. Res., 119(7), 1509–1523. CrossRef Scholar google search
Erbel C., Rupp G., Domschke G., Linden F., Akhavanpoor M., Doesch A.O., Katus H.A., Gleissner C.A. (2016) Differential regulation of aldose reductase expression during macrophage polarization depends on hyperglycemia. Innate Immun., 22(3), 230–237. CrossRef Scholar google search
Kamińska A., Enguita F.J., Stępień E.Ł. (2018) Lactadherin: an unappreciated haemostasis regulator and potential therapeutic agent. Vascul. Pharmacol., 101, 21–28. CrossRef Scholar google search
Takahashi L., Ishigami T., Tomiyama H., Kato Y., Kikuchi H., Tasaki K., Yamashita J., Inoue S., Taguri M., Nagao T., Chikamori T., Ishikawa Y., Yokoyama U.J. (2021) Increased plasma levels of myosin heavy chain 11 is associated with atherosclerosis. J. Clin. Med., 10(14), 3155. CrossRef Scholar google search
Yokoyama U., Arakawa N., Ishiwata R., Yasuda S., Minami T., Goda M., Uchida K., Suzuki S., Matsumoto M., Koizumi N., Taguri M., Hirano H., Yoshimura K., Ogino H., Masuda M., Ishikawa Y. (2018) Proteomic analysis of aortic smooth muscle cell secretions reveals an association of myosin heavy chain 11 with abdominal aortic aneurysm. Am. J. Physiol. Heart Circ. Physiol., 315(4), H1012–H1018. CrossRef Scholar google search